Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30314
Title: Bayesian inference in parameter estimation of bioprocesses
Authors: Mathias, Nigel
Advisor: Mhaskar, Prashant
Department: Chemical Engineering
Keywords: Bayesian inference;Parameter estimation
Publication Date: 2024
Abstract: The following thesis explores the use of Bayes’ theorem for modelling bioprocesses, specifically using a combination of data-driven modelling techniques and Bayesian inference, to address practical concerns that arise when estimating parameters. This thesis is divided into four chapters, including a novel contribution to the use of sur- rogate modelling and parameter estimation algorithms for noisy data. The 2nd chapter addresses the problem of high computational expense when estimat- ing parameters using complex models. The main solution here is the use of surrogate modelling. This method was then applied to a high-fidelity model provided by Sarto- rius AG. In this, a 3-batch run (simulated) of the bioreactor was passed through the algorithm, and two influential parameters, the growth and death rates of the live cell cultures, were estimated. The 3rd chapter addresses other challenges that arise in parameter estimation prob- lems. Specifically, the issue of having limited data on a new process can be addressed using historical data, a distinct feature in Bayesian Learning. Finally, the problem with choosing the “right” model for a given process is studied through the use of a term in Bayesian inference known as the evidence. In this, the evidence is used to select between a series of models based on both model complexity and goodness-of-fit to the data.
URI: http://hdl.handle.net/11375/30314
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mathias_nigel_J_2024september_masc.pdf
Embargoed until: 2025-10-02
1.82 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue