Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30216
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWalter, Stephen-
dc.contributor.authorSong, Ge-
dc.date.accessioned2024-09-23T15:51:52Z-
dc.date.available2024-09-23T15:51:52Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/11375/30216-
dc.description.abstractMeta-analysis is a method that combines the results of multiple studies, so that the overall treatment effect can be estimated. However, the traditional method of study weight estimation by taking the reciprocals of the estimated variances is biased. For binary outcome data from a clinical trial, the accuracy of estimation of single study weight, summary effect, and variance of summary effect from the developed bias correction factors for log relative risk (RD), log relative risk (lnRR) or log odds ratio (lnOR) were assessed. When sample sizes are small, zero cell frequencies often occur in contingency tables and make parameter estimation more difficult. Methods of dealing with zero-cells were elaborated, which including adding 0.5 to the zero cell, adding 0.5 to all cells in the table if a zero frequency occurs, adding 0.5 to all cells all the time, and adding the reciprocal of the size of the contrasting study arm to each cell when a zero frequency occurs. In addition, for risk difference, adding 0.5 to the zero cells when two zero cells occur, and adding 0.5 to all the cells when two zero cells occur are also considered since the continuity of the weight of risk difference is only affected by double zero frequencies. Impact of bias correction on real meta- analyses from Cochrane Database was demonstrated.en_US
dc.language.isoenen_US
dc.titleIdentification of Optimal Study Weights in Meta-Analyses with a Binary Outcomeen_US
dc.typeThesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Song_Ge_202408_MSc.pdf
Open Access
7.98 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue