Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29829
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFilipe, Carlos-
dc.contributor.advisorHosseinidoust, Zeinab-
dc.contributor.authorGomez, Mellissa-
dc.date.accessioned2024-05-31T19:05:16Z-
dc.date.available2024-05-31T19:05:16Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/11375/29829-
dc.description.abstractBacterial contamination of food is a global concern. Methods of treating bacterial contamination are limited. Bacteriophages, bacterial viruses, offer a promising solution. However, bacteriophages may have limited application for foods that undergo sterilization processing, are inhospitable to organisms, or must be maintained in a dry state. This thesis focused on methods to expand the application of bacteriophages. First, bacteriophages were subjected to generalized stresses of desiccation, heat, and acidity, under laboratory conditions to propagate new populations with improved stress resistance. However, testing of these stress-resistant populations under real-world conditions failed to produce results comparable to generalized laboratory conditions. Success in the application of selected bacteriophages may require high situational specificity during selection, including in terms of food matrix and stress mechanics. The focus of our research shifted from the modification of bacteriophage populations themselves to the development of food-safe protective matrices. Designed matrices encapsulate bacteriophage for integration with modern food production and even the food products themselves. A pullulan-trehalose sugar powder was developed for the protection of a model bacteriophage from pasteurization. Microparticles were engineered such that the majority of the particle would be composed of trehalose as a stabilizer and polysaccharide pullulan was designed to accumulate at the particle surface to slow dissolution. This structure resulted in a bacteriophage powder that remained intact and protective over short-term high-temperature pasteurization, whereas unprotected bacteriophage experienced significant loss in titer. Leucine-lactose and leucine-lactose-maltodextrin microparticles were engineered for the inclusion of bacteriophage in powdered infant formula. The bacteriophage powder was designed as a dormant protection system that could activate upon reconstitution. The excipient system was formulated to not significantly affect the pH, composition, and dissolution of commercial infant formula. The bacteriophage powder was also engineered to match the shelf life and secondary shelf life of infant formula. Altogether, this thesis demonstrates that bacteriophage application in different foods can be expanded through particle engineering.en_US
dc.language.isoenen_US
dc.subjectSpray dryingen_US
dc.subjectAdaptational Evolutionen_US
dc.subjectBacteriophagesen_US
dc.subjectBacterial Contaminationen_US
dc.subjectFood Safetyen_US
dc.subjectStabilizationen_US
dc.subjectPasteurizationen_US
dc.subjectInfant Formulaen_US
dc.titleEngineering Strategies for Broadening Bacteriophage Application in the Food Supply Chainen_US
dc.title.alternativeEXPANDING THE APPLICATIONS OF BACTERIOPHAGES IN FOOD SAFETYen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractBacterial contamination of food can lead to widespread outbreaks and subsequent preventable deaths. Our best tool against bacteria, antibiotics, cannot be widely applied to food for risk to the natural human biome and creation of resistant bacteria. Bacteriophages, viruses that infect bacteria, are a naturally occurring bactericide that offer an alternative solution. This thesis focuses on improving the application of bacteriophages in food. First, bacteriophages are selected for resistance to common food processing stresses, such as heat, drying, and acidity, to prepare future generations that are stress-resistant. Second, a protective sugar powder was designed that could be used to add bacteriophages to milk before pasteurization. Post-pasteurization, the sugar would dissolve and release bacteriophage into the milk to deal with any post-processing contamination. Lastly, an infant-safe bacteriophage powder was developed that could be intermixed with powdered infant formula in an effort to reduce infant death due to the ingestion of bacteria.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gomez_Mellissa_2024May_PhD.pdf
Access is allowed from: 2025-05-24
7.19 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue