Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29755
Title: Self-Piercing Riveting of High Ductility Al-Fe-Zn-Mg Casting Alloy (Nemalloy HE700) in F Temper: Modelling, Simulation and Experimental Analysis
Authors: Guo, Yunsong
Advisor: Jain, Mukesh
Shankar, Sumanth
Department: Mechanical Engineering
Keywords: Self-Piercing Riveting, high-ductility casting aluminum alloys, Nemalloy HE700, Finite Element Analysis
Publication Date: 2024
Abstract: This thesis presents a comprehensive investigation into the feasibility and optimization of self-piercing riveting (SPR) for joining high-ductility die-cast aluminum alloy Nemalloy HE700 in F temper (as-cast) condition to dissimilar sheet materials, namely wrought aluminum alloy 6082-T6 and dual-phase steel DP600. The study demonstrates successful SPR joining of HE700 to these materials, with optimized process parameters and joint quality meeting automotive industry standards. Systematic experimental studies were conducted to investigate the effects of key SPR process parameters, including die geometry, ring groove depth, rivet hardness, and length, on joint quality and performance. Microstructural characterization revealed distinct patterns of grain flow and localized hardening in HE700 around the rivet and die features, providing insights into its deformation characteristics. Finite element simulations, incorporating advanced material models such as Johnson-Cook plasticity and failure for AA6082 and DP600, and Voce hardening with Gurson-Tvergaard-Needleman void damage model for HE700, were developed and extensively validated against experimental results. The simulations accurately predicted potential failure sites in HE700, aligning with experimental observations of crack initiation. Numerical parametric studies demonstrated the intricate effects of process parameters and material properties on the stress and strain distributions, material flow, and damage accumulation during SPR. The research contributes to the growing body of knowledge on advanced joining techniques for dissimilar materials, supporting vehicle lightweighting efforts. It establishes a comprehensive methodology integrating experiments, microstructural characterization, and simulations for studying and optimizing SPR processes for low ductility casting alloys, serving as a blueprint for future research and industrial implementation. The findings demonstrate the viability and potential of SPR technology for integrating high-ductility die-cast aluminum alloy HE700 into lightweight automotive body structures, paving the way for its wider industrial adoption.
URI: http://hdl.handle.net/11375/29755
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Guo_Yunsong_202404_MASc.pdf
Access is allowed from: 2025-04-22
9.73 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue