Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29734
Title: Machine Learning and Artificial Intelligence Application in Process Control
Authors: Wang, Xiaonian
Advisor: Prashant, Mhaskar
Department: Chemical Engineering
Keywords: Process control;Machine learning;Reinforcement learning;Koopman operator;modeling;optimization
Publication Date: 2024
Abstract: This thesis consists of four chapters including two main contributions on the application of machine learning and artificial intelligence on process modeling and controller design. Chapter 2 will talk about applying AI to controller design. This chapter proposes and implements a novel reinforcement learning (RL)--based controller design on chemical engineering examples. To address the issue of costly and unsafe training of model-free RL-based controllers, we propose an implementable RL-based controller design that leverages offline MPC calculations, that have already developed based on a step-response model. In this method, a RL agent is trained to imitate the MPC performance. Then, the trained agent is utilized in a model-free RL framework to interact with the actual process so as to continuously learn and optimize its performance under a safe operating range of processes. This contribution is marked as the first implementable RL-based controller for practical industrial application. Chapter 3 will focus on AI applications in process modeling. As nonlinear dynamics are widely encountered and challenging to simulate, nonlinear MPC (NMPC) is recognized as a promising tool to tackle this challenge. However, the lack of a reliable nonlinear model remains a roadblock for this technique. To address this issue, we develop a novel data-driven modeling method that utilizes the nonlinear autoencoder, to result in a modeling technique where the nonlinearity in the model stems from the analysis of the measured variables. Moreover, a quadratic program (QP) based MPC is developed based on this model, by utilizing an autoencoder as a transformer between the controller and process. This work contributes as an extension of the classic Koopman operator modeling method and a remarkable linear MPC design that can outperform other NMPCs such as neural network-based MPC.
URI: http://hdl.handle.net/11375/29734
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Wang_Xiaonian_202404_MASc.pdf
Access is allowed from: 2025-04-25
4.93 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue