Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29635
Title: Temperate Phage-Antibiotic Synergy
Authors: Al-Anany, Amany
Advisor: Hynes, Alexander
Department: Biochemistry and Biomedical Sciences
Keywords: Phage therapy;Temperate phage;Antibiotic
Publication Date: 2024
Abstract: The escalating threat of antimicrobial resistance has intensified the exploration of alternative treatments, with bacteriophage (phage) therapy emerging as a potential substitute for antibiotics. While strictly lytic phages rapidly kill bacteria, temperate phages can also go dormant in their hosts. Accordingly, despite their prevalence, they are considered unsuitable for therapy. My systematic review of phage therapy in urinary tract infections (UTIs) highlighted this. This review motivated me to explore how the potential of these phages could be leveraged. Chapter 3 introduces a novel strategy to do so, exploring whether the fluoroquinolone antibiotic ciprofloxacin could synergize with temperate phages. This innovative strategy exploits the ability of the antibiotic to awaken dormant temperate phages, driving a potent synergy (≥8 log reduction) able to result in bacterial eradication. This is a potential breakthrough in the use of phages. Chapter 4 expands on this finding, establishing that a synergy exists across various drug classes with diverse mechanisms of action. Surprisingly, the synergy extends beyond antibiotics triggering the bacterial SOS-response known to wake temperate phages and also includes protein synthesis inhibitors, offering a new approach to influence the phage lysis-lysogeny decision. Chapter 5 explores the identified synergy in antibiotic-resistant models, focusing on the impact of antibiotic resistance on the effect of combining temperate phages with antibiotics. While the majority of cases demonstrated synergy comparable to the absence of antibiotic resistance, an exception was noted in the acetylation-resistant models for both gentamicin and ciprofloxacin. These resistance genes abolished synergy with the temperate phage, emphasizing the importance of the resistance mechanism within temperate phage antibiotic synergy (tPAS). In conclusion, this thesis underscores the lack of interest in temperate phages for therapy and demonstrates a scalable strategy to overcome the major barriers to their use. I uncover the mechanisms underlying the synergy and show that these concepts are applicable even in the context of resistance to the synergizing antibiotic. These findings propose a remarkable shift in how antimicrobial therapy approaches are viewed.
URI: http://hdl.handle.net/11375/29635
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Amany_Alanany 202404.pdf
Access is allowed from: 2025-04-04
9.38 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue