Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29447
Title: Few-Shot Medical Image Segmentation Using Semi-Supervised and Weakly-Supervised Learning
Authors: Rahmati, Behnam
Advisor: Shirani, Shahram
Keshavarz-Motamed, Zahra
Department: Electrical and Computer Engineering
Publication Date: 2024
Abstract: Medical image segmentation plays a critical role in assessing, diagnosing, and treating various medical conditions. State-of-the-art convolutional neural network architectures have demonstrated promising performance. However, these methods heavily rely on labeled images to achieve optimal performance, which is challenging, particularly in medical cases where obtaining pixel-level annotations is often difficult. This thesis explores six distinct methods for the few-shot segmentation of medical images, with a specific focus on cardiac structures: 1- We propose a novel weakly- supervised learning method for the rapid annotation of the left ventricle and based on its circular shape. 2-We introduce a novel physics-informed label-propagation method based on the patient-specific characteristics of the left ventricle to transform the labels from end-diastole and end-systole phases through the entire cardiac cycle. 3- We combine this label propagation method with a semi-supervised learning approach to provide a labeling framework for the segmentation of the left ventricle with severely limited labeled data. 4- We propose a left ventricle segmentation method inspired by the idea of consistency regularization and by creating redundant complementing labels. 5- We introduce a semi-supervised learning method for the segmentation of any medical image by designing a novel loss function. The loss function incorporates an adaptation of active contours and also considers reliable and unreliable pixels through masked cross-entropy and masked active contour terms. 6- We develop a framework for enhancing medical image segmentation by using different techniques, including total variation, deformable models, and uncertainty-based pixel-level and image-level pseudo-label pruning. We evaluated our proposed methods on various medical image datasets, including SCD, ACDC, and CCLISD. These datasets segment different structures from CT and MRI modalities. Our methods significantly enhance the segmentation accuracy in terms of Dice index and Jaccard index while also reducing the required resources, including the time for each annotation, expertise, and the number of annotations.
URI: http://hdl.handle.net/11375/29447
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis.pdf
Access is allowed from: 2025-01-23
51.87 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue