Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29426
Title: Feasibility of sustainable nitrogen removal: integration of partial nitritation-anammox with membrane aerated biofilm reactor (MABR)
Authors: Shiu, Natalia
Advisor: Kim, Younggy
Department: Civil Engineering
Keywords: anaerobic ammonium oxidation (anammox);membrane aerated biofilm reactor (MABR);sustainable nitrogen removal
Publication Date: 2023
Abstract: The presence of nutrients, such as nitrogenous compounds, in wastewater can pose serious environmental concerns to water systems leading to reduced water quality and potential risks to the public health. Nutrient removal in conventional wastewater treatment systems is becoming increasingly more costly due to the extensive energy requirements and high aeration costs. Anaerobic ammonium oxidation (Anammox) is an alternative method for nutrient removal which can reduce overall treatment costs due to less aeration requirements and less sludge production. Anammox process can be implemented with other innovative technologies, such as membrane aerated biofilm reactors (MABR) to achieve effective and sustainable nutrient removal. A major challenge associated with Anammox process is effective control of nitrite oxidizing bacteria (NOB). High temperature in wastewater treatment systems can promote Anammox bacterial growth and inhibit NOB activity. This research aims to investigate the feasibility of integrating Anammox processes with MABR technologies and to examine the effects of high temperature aeration supplied to MABR systems on Anammox bacterial growth and NOB suppression. The nitrogen removal by Anammox bacteria in a lab-scaled MABR is examined to determine the impact of aeration temperature on inhibition of NOB.
URI: http://hdl.handle.net/11375/29426
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Shiu_Natalia_December2023_MASc.pdf
Access is allowed from: 2024-12-31
910.18 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue