Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29258
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCapone, John P.-
dc.contributor.authorDonaldson, Logan William Frederick-
dc.date.accessioned2023-12-04T16:12:38Z-
dc.date.available2023-12-04T16:12:38Z-
dc.date.issued1992-09-
dc.identifier.urihttp://hdl.handle.net/11375/29258-
dc.description.abstractIn order to facilitate a biophysical analysis of the carboxy terminal acidic transactivation domain (AAD) of Vmw65 from Herpes Simplex Virus Type 1 (HSV-1), an overexpression system in Escherichia coli was constructed and optimized to produce milligram quantities of this polypeptide. Purification of the polypeptide was facilitated by creating a fusion protein to glutathione S-transferase (GST) from Schizosoma japonicum using a commercially available vector. Upon thrombin digestion of the fusion protein, the carrier and AAD products were resolved by anion-exchange chromatography. With typically 15 mg of AAD available from a 12 litre culture, several biophysical studies were initiated. Circular dichroism and fluorescence spectroscopy both described a polypeptide with an extended structure reminicent of a random-coil; that is, it did not possess substantial quantities of known elements of secondary structure such as a-helicies and β-sheets under physiological conditions. A new structure high in α-helical content was induced upon addition of trifluoroethanol to mimic a hydrophobic milieu. Ultracentrifugation data supported the spectroscopic observations by describing an extended, monomeric polypeptide. The ultimate goal of the study, a teritiary structure, was sought by attempting to crystallize AAD with popular salts and organic solvents. Biologically, the described random-coil structure of AAD could be relevant to its role as a promoter and stablizer of the transcriptional pre-initation complex, the determining step in gene expression. A structurally labile domain would support AAD’s ability to interact with several targets including TFIID and TFIIB, though not necessarily by similar mechanisms. The requirement for a drastic conformational change such as a random-coil to α-helical transition currently remains unclear though observations made in this study of AAD in trifluoroethanol have shown that a conformational change is indeed possible. With a means of producing large quantities of AAD, the opportunity now arises to study its interaction with available cloned targets. The ensuing biophysical studies will then provide a greater understanding of AAD’s important role in gene expression.en_US
dc.language.isoenen_US
dc.subjectHerpes Simplex Virus Type 1en_US
dc.subjectCarboxy Terminal Transactivation Domainen_US
dc.titleOverexpression, Purification and Biophysical Studies of the Carboxy Terminal Transactivation Domain of Vmw65 from Herpes Simplex Virus Type 1en_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
donaldson_logan_w_f_1992Sept_masters.pdf
Open Access
19.18 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue