Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29143
Title: DATA ANALYSIS OF TWO NON-ISOTHERMAL TURBULENT JETS
Authors: Quach, Dan
Advisor: Szymanski, Jacek
Jackson, David
Ewing, Dan
Keywords: Laser Doppler Anemometer;Window Average Gradient;Two Opposing Non-lsothermal Turbulent Jets
Publication Date: Sep-2002
Abstract: A three-component Laser Doppler Anemometer (LDA) instrument, an array of stationary thermocouples and a moving thermocouple were used to capture the three-dimensional flow and temperature fields for the system of two opposing axisymmetric turbulent jets. It was found that buoyancy-induced curvature of the hot jet resulted in cross shearing with the opposing jet. The following report will investigate the adequacy of the current experimental measurements for the identification of coherent structures and the characterization of their effects on the mean flow. Identification tools include the power spectra and conditional average velocity measurements based on the Window Average Gradient (WAG). It was determined that the low sampling and large spatial positions of the thermocouple measurements were not for the retrieval of quantitative turbulence data. For the velocity measurements, the LDA data were found to be adequate in regions of low turbulence intensities but degraded as the measurements approached the region where the two jet shear layers interacted. The detection of periodic structures from the power spectrum was inconclusive due to noise. The WAG algorithm was affected by the irregular sampling and required modification. For the events detected, an intermittency factor of 16.4% at the interaction region of two shear layers was observed. In addition, these results suggest that these events contribute 30% of the mean momentum transfer across the jet. Furthermore, the contribution of these events to the lateral component of the turbulent kinetic energy was nearly eight times larger than the contributions to the axial or transverse direction.
URI: http://hdl.handle.net/11375/29143
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Quach_Dan_2002Sep_Masters.pdf
Open Access
23.63 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue