Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29113
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFang, Qiyin-
dc.contributor.authorPhillips, Ian Hamilton Dale-
dc.date.accessioned2023-10-24T19:12:21Z-
dc.date.available2023-10-24T19:12:21Z-
dc.date.issued2023-11-24-
dc.identifier.urihttp://hdl.handle.net/11375/29113-
dc.description.abstractColonoscopy is essential for colorectal cancer screening and disease surveillance. It can remove pre-cancerous colon polyps to reduce a patient’s cancer risk. This thesis aims to improve colonoscopy’s localization using motion tracking and colonoscopy’s coverage using surface mapping. Chapter 4 describes an endoscope motion tracker that records the scope’s insertion length, rotation, and speed during a colonoscopy. The endoscope tracker’s motion record can be combined with the endoscope’s video to localize colon polyps or cancers. In the future, the device could record highly skilled manoeuvres performed by endoscopists to help train medical residents. It is difficult to image the colon’s mucosa because the colonoscope’s camera has a limited field of view. Chapter 3 uses a 180° fisheye camera to unwrap high resolution panoramas of a colon phantom. The panoramas are then combined into a mosaic map of the colon phantom’s surface. The colon’s surface is approximated as a cylinder. Follow up experiments could test our mapping algorithm using imagery from a wide-angle, high-definition colonoscope. Chapter 2 describes another technique to localize locations where polyps have been removed—blood vessel landmarks. Colonic blood vessels from a pig were imaged to determine if they could be used to fingerprint locations on the colon’s wall. Blood vessels are also useful image features for surface mapping. The proof-of-concept experiments successfully imaged large arteries but further work is needed to image the small capillaries in the colonic mucosa and to image the veins. In summary, we have visualized colonic blood vessels to test if they could be useful landmarks, tested using an extended field of view camera to create an unwrapped map of the colon wall, and designed an endoscope tracker to help localize abnormal tissue. Combining the endoscope tracker with the other two techniques should make is possible to accurately map the colon.en_US
dc.language.isoenen_US
dc.subjectColonoscopyen_US
dc.subjectEndoscopesen_US
dc.subjectMotion Measurementen_US
dc.subjectReal-time Systemsen_US
dc.subjectBlood Vesselsen_US
dc.subjectComputed Tomographyen_US
dc.subjectSurface Mapen_US
dc.subjectWide-angle Camerasen_US
dc.titleImproving the Localization and Coverage of Colonoscopy with Motion Tracking and Surface Mappingen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractColonoscopy is a powerful tool for colon cancer screening. A colonoscopy can decrease the chance of developing advanced cancers by removing pre-cancerous polyps before they grow. This research works to improve colonoscopy’s localization using motion tracking and its coverage using surface mapping. We have developed an endoscope motion tracker that records the scope’s insertion length, rotation, and speed during a colonoscopy. It is In described in Chapter 4. The recorded motion can be combined with the endoscope’s video to improve colon cancer localization. Next, it is difficult to image the colon’s mucosa because the colonoscope’s camera has a limited field of view. Chapter 3 uses a 180° fisheye camera to unwrap high resolution panoramas of a colon phantom. The panoramas are then combined into a cylindrical surface map. Finally, Chapter 2 images the colon’s blood vessels to determine if they can fingerprint locations on the colon’s wall.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Phillips_Ian_HD_202309_PhD.pdf
Access is allowed from: 2024-09-27
7.59 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue