Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29054
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGibala, Martin-
dc.contributor.authorBone, Jack-
dc.date.accessioned2023-10-15T18:57:59Z-
dc.date.available2023-10-15T18:57:59Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/29054-
dc.description.abstractIntroduction: Acute ketone monoester (KE) supplementation affects exercise responses but there are equivocal data regarding the effects on exercise efficiency. We examined the effect of ketone monoester ingestion on exercise efficiency during cycling and probed further the influence of supplement dose and exercise intensity. This study was registered prior to data collection at ClinicalTrials.org (NCT05665855). Methods: Twenty-eight trained adults were recruited [16 males, 12 females; peak oxygen uptake (V̇O2peak): 59±11 ml·kg-1·min-1]. Participants completed three experimental trials in a randomized, crossover, and double-blinded manner, each separated by ~1 week. Participants ingested either a 0.3 (KE-LO) or 0.6 g/kg (KE-HI) body mass dose of KE or a flavour-matched placebo (PLAC) ~30 min prior to exercise. The incremental cycling protocol involved a 3-minute warm-up, three 5-minute stages at 75%, 100%, and 125% of individual ventilatory threshold, and a ramp increase to volitional exhaustion. Expired gases and heart rate were measured continually during exercise. Results: Venous blood [ß-hydroxybutyrate], the major circulating ketone body, was higher in both KE conditions compared to PLAC and also different between conditions (3.0±1.1 and 2.3±0.6 vs 0.2±0.1 mM; all p<0.05). There were no differences in submaximal exercise V̇O2, exercise economy, gross efficiency, or delta efficiency between conditions (all p>0.05). Submaximal exercise heart rate and ventilation were higher in both KE conditions compared to PLAC (141±11 and 141±12 vs 137±12 beats/min; 63±14 and 62±13 vs 60±13 L/min, respectively; all p<0.05). Peak power output at V̇O2peak was lower in KE-HI compared to both KE-LO and PLAC (329±60 vs 339±62 and 341±61 W; both p<0.05). Conclusion: KE supplementation did not alter exercise efficiency during submaximal cycling. KE ingestion increased cardiorespiratory stress during submaximal exercise and the higher dose reduced peak aerobic power output. Future studies should investigate the mechanisms by which KE ingestion alters exercise responses.en_US
dc.language.isoenen_US
dc.subjectExercise efficiencyen_US
dc.subjectMetabolismen_US
dc.subjectKetone Supplementen_US
dc.subjectMaximal oxygen uptakeen_US
dc.titleThe Effects of Acute Ketone Monoester Supplementation on Exercise Efficiency and the Influence of Dose and Intensityen_US
dc.typeThesisen_US
dc.contributor.departmentKinesiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractEndurance exercise performance is determined by many variables including the efficiency of the individual. This can be measured during cycling by calculating the ratio of oxygen uptake relative to power output. Ketone supplements have been suggested to alter exercise efficiency. We investigated this issue by having trained adults complete an incremental cycling protocol on three occasions. Before exercise the participants ingested either a small or large dose of a ketone supplement or a taste-matched placebo drink. Exercise efficiency was not different between the conditions but ventilation rate and heart rate were higher during the ketone supplemented trials compared to the placebo. The power output that the participants could achieve at maximal exercise was reduced in the high dose ketone condition. Our study does not support the use of ketone supplements as a strategy to enhance endurance exercise performance. Future studies should investigate the mechanisms by which ketones affect exercise responses.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Bone_Jack_S_2023September_Master of Science.pdf
Access is allowed from: 2024-09-21
819.05 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue