Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29020
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArmstrong, Andrea-
dc.contributor.authorTigwell, Mackenzie-
dc.date.accessioned2023-10-10T15:15:05Z-
dc.date.available2023-10-10T15:15:05Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/29020-
dc.description.abstractThis research studied Ho166/PLLA microspheres, a promising treatment for tumours in the liver. The Ho166 is generated through a neutron capture reaction during irradiation in a nuclear reactor. Previous work has found that neutron-irradiation in-core causes damage to microspheres and causes additional degradation to progress once suspended in media. The cause of this damage was not well understood and is the focus of this research. This research studied factors present in-core such as heat, gamma radiation, and impacts of lead shielding, for their impact on microsphere quality. Additionally, this research looked at the potential of reactive oxygen species causing damage once microspheres are suspended in liquid. Thresholds for damage were identified to correlate with the glass transition temperature of poly- l-lactic acid. Exposure to gamma radiation induces heating, as well as structural changes to the polymer which shifts the temperature where the glass transition occurs. Damage formed from gamma radiation, independent of other variables, was seen at extreme accumulated doses. Notably, exposure to gamma radiation and heat did not cause a progression of damage over time. Samples exposed only to these factors remained stable in solution for extended periods. A theory was proposed that reactive oxygen species formed by the interaction of ionizing radiation with the suspending media may be causing the progression of damage over time. This factor would only be present for microspheres having undergone neutron capture reactions, forming radioactive holmium. Testing confirmed a potential impact of radiation interactions with the suspending media contributing to damage progression. Several thicknesses of lead shielding surrounding the sample chamber were tested in-core. There were significant impacts on temperature, neutron flux, and microsphere quality.en_US
dc.language.isoenen_US
dc.subjectMicrosphereen_US
dc.subjectHolmiumen_US
dc.subjectSelective Internal Radiation Therapyen_US
dc.subjectPoly-L-lactic aciden_US
dc.titleFactors Contributing to Degradation of Holmium-166 Poly-L- Lactic Acid Microspheresen_US
dc.typeThesisen_US
dc.contributor.departmentPhysicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractThis research studied Ho166/PLLA microspheres, a promising treatment for tumours in the liver. The preparation of this treatment includes microspheres being neutron irradiated in the core of a nuclear reactor. Irradiation in-core leads to damage of microspheres. This research studied factors present in-core such as heat, gamma radiation, and thickness of lead shielding, for their impact on microsphere quality. Additionally, this research looked at the potential of reactive oxygen species causing damage once microspheres are suspended in liquid. Thresholds for damage were identified for temperature and gamma radiation exposure. Radiation interactions in liquid suggest possible damaging effects over time. Finally changing the thickness of lead shielding in core had significant impact on temperature, neutron flux, and microsphere quality.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tigwell_Mackenzie_J_2023September_Masters.pdf
Open Access
6.09 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue