Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28866
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCassidy, D.T.-
dc.contributor.authorLISAK, DUBRAVKA-
dc.date.accessioned2023-08-31T15:41:38Z-
dc.date.available2023-08-31T15:41:38Z-
dc.date.issued1999-11-
dc.identifier.urihttp://hdl.handle.net/11375/28866-
dc.description.abstractThis thesis documents a study of bonding stress and the reliability of GaAs-based lasers for high-power applications. GaAs-based lasers were bonded to oxygen-free high- conductivity (OFHC) copper heat sinks using a eutectic PbSn solder or a silver-filled conductive epoxy, and life tested. Epoxy-bonded devices were observed to have a larger failure rate on life test than solder-bonded devices. Bonding stress, as measured by the degree of polarization (DOP) of photoluminescence, was found to be the largest in epoxybonded devices. As well, the type of heat sink and bonding adhesive affected the stress in the laser material, with bonding stress increasing when there was a larger mismatch of coefficients of thermal expansion between the laser material, adhesive and heat sink. The reliability of the lasers was affected by the amount of force applied to unbonded laser chips. As the applied force increased on a chip centred on a groove, the rate of degradation in the output power increased. A limit in stress tolerance was observed in the lasers, which meant that larger amounts of stress would lead to increased rates of degradation in the output power. As well, the performance of lasers selected from a batch showing poor reliability degraded at an accelerated rate after several hours of operation under applied strain.en_US
dc.language.isoenen_US
dc.subjectGaAs-Based Lasersen_US
dc.subjectBonding Stressen_US
dc.titleSTRESS AND RELIABILITY OF HIGH-POWER GaAs-BASED LASERSen_US
dc.typeThesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lisak_Dubravka_1999Nov_masters_done.pdf
Open Access
17.98 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue