Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28705
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSaravanamuttu, Kalaichelvi-
dc.contributor.advisorFradin, Cecile-
dc.contributor.authorBenincasa, Kathryn Ann-
dc.date.accessioned2023-06-30T01:05:05Z-
dc.date.available2023-06-30T01:05:05Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/28705-
dc.description.abstractTaking inspiration from a variety of creatures found in nature, this thesis demonstrates a new class of materials designed for light capture and guidance. Through the facile method of waveguide self-inscription developed herein, the arrangement of these self-generated light channels can be influenced to produce complex architectures. Inspired by the arrangement of ommatidia found in arthropodal eyes, this was first demonstrated through the fabrication of a radial arrangement of waveguides. This resulted in a thin, polymer film which demonstrated a continuous, panoramic field of view (FOV) able to successfully control the light of a light emitting diode (LED). Moving to more complex architecture, waveguides self-generated in a conical geometry were fabricated. More closely reminiscent of the geometry seen in arthropodal eyes, this waveguide architecture demonstrated a seamless omnidirectional FOV and enhanced imaging capabilities in conjunction with a CMOS camera chip. Lastly, using the method of waveguide self-inscription with an electroactive hydrogel precursor, remote controllable light guiding architectures, as inspired by deep sea creatures, are designed and fabricated. The application of an electric field, in conjunction with the stimuli-responsive waveguides, allows for precise control of the waveguide structures and therefore control over the waveguided light.en_US
dc.language.isoenen_US
dc.subjectbioinspired opticsen_US
dc.subjectwaveguide array(s)en_US
dc.subjectnonlinear opticsen_US
dc.titleBioinspired light collection: self-written waveguide architectures with enhanced fields of viewen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Benincasa_Kathryn_A_2023June_Doctor_of_Philosophy.pdf
Access is allowed from: 2024-06-29
11.2 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue