Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Engineering
  4. Department of Chemical Engineering
  5. Chemical Engineering Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28672
Title: Internal microstructure of spray dried particles affects viral vector activity in dry vaccines
Authors: Singh, Varsha
Morgan, Blair
Schertel, Andre
Dolovich, Myrna
Xing, Zhou
Thompson, Michael
Cranston, Emily
Department: Chemical Engineering
Keywords: vaccine
Publication Date: 1-Jun-2023
Publisher: International Journal of Pharmaceutics
Abstract: To maintain the activity of sensitive biologics during encapsulation by spray drying, a better understanding of deactivation pathways in dried particles is necessary. The effect of solid-air interfaces within dried particles on viral deactivation was examined with three binary excipient blends, mannitol/dextran (MD), xylitol/dextran (XD), and lactose/trehalose (LT). Particles encapsulating human serotype 5 adenovirus viral vector (AdHu5) were produced via both spray drying and acoustic levitation. The particles’ internal microstructure was directly visualized, and the location of a viral vector analogue was spatially mapped within the particles by volume imaging using focused ion beam sectioning and scanning electron microscopy. The majority of the viral vector analogue was found at, or near, the solid-air interfaces. Peclet number and crystallization kinetics governed the internal microstructure of the particles: XD particles with minimal internal voids retained the highest viral activity, followed by MD particles with a few large voids, and finally LT particles with numerous internal voids exhibited the lowest viral activity. Overall, AdHu5 activity decreased as the total solid-air interfacial area increased (as quantified by nitrogen sorption). Along with processing losses, this work highlights the importance of surface area within particles as an indicator of activity losses for dried biologics.
URI: http://hdl.handle.net/11375/28672
Identifier: 10.1016/j.ijpharm.2023.122988
Appears in Collections:Chemical Engineering Publications

Files in This Item:
File Description SizeFormat 
Interface_Studies_v1EC.pdf
Access is allowed from: 2024-06-10
1.46 MBAdobe PDFView/Open
Show full item record Statistics


This item is licensed under a Creative Commons License Creative Commons

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue