Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28497
Title: Macroporous Hydrogels for Tissue Engineering and Wound Care
Authors: Toufanian, Samaneh
Advisor: Hoare, Todd
Department: Chemical Engineering
Keywords: Hydrogels;Tissue Engineering;Wound Care;Macroporous;Electrospinning;Supercritical Carbon Dioxide;Drug Encapsulation
Publication Date: 2023
Abstract: Hydrogels are three-dimension networks of water-soluble polymer chains and have attracted interest in biomedical engineering, targeted drug delivery, tissue engineering, and regenerative medicine due to their ability to retain water coupled with their highly tunable physicochemical and biological properties. In the specific context of wound care, hydrogels can both maintain high wound hydration as well as absorb and manage wound exudate, both of which are major challenges in wound care. Hydrogel wound dressings can simultaneously deliver medication directly to the wound to suppress or treat infections, including antibiotic-resistant strains such as Methicillin-resistant S. aureus (MRSA). This thesis develops two wound care products that can address challenges in the selection and delivery of drugs to treat antibiotic-resistant strain infections: (1) in situ-gelling poly(oligoethylene glycol methacrylate) (POEGMA) hydrogel wound dressings containing self-assembled nanoparticles encapsulated with fusidic acid; and (2) an in situ calcium-crosslinked alginate scaffold produced using pressurized gas expanded liquids (PGX) technology impregnated with fusidic acid or tigecycline using supercritical adsorptive precipitation (sc-AP). The POEGMA hydrogel wound dressings helped supress MRSA infection and prevent systemic infection during the course of treatment, facilitating a 1-2 fold decrease in bacterial load in the wound bed. The sc-AP technology was shown to be compatible with loading clinically-relevant doses of both antimicrobial compounds, while the resulting wound dressings were effective in treating MRSA wound infections. In case of tigecycline loaded alginate scaffolds, the infection was completely cleared. In tissue engineering applications, injectable macroporous hydrogels are particularly limited by two factors: (1) their need for invasive administration, typically implantation; and (2) their generally weak mechanics. In the first case, reports of injectable hydrogels often involve toxic compounds or by-products that result in loss of cell viability. This thesis addresses this challenge by design and development of a POEGMA-based macroporous hydrogel scaffold based on a novel, non-cytotoxic pore forming emulsion based on perfluorocarbons. Use of the pore-forming emulsion significantly improved cell viability in vitro 14 days after injection and was well tolerated in vivo with minimal to no inflammatory response. In the second case, an interpenetrating “hard-soft” nanofibrous hydrogel network was fabricated by co-electrospinning POEGMA with poly(caprolactone) (PCL). The PCL phase significantly enhanced the mechanical properties of the electrospun POEGMA hydrogel scaffold making handling and manipulating the scaffolds possible, while the presence of the POEGMA phase significantly improved the biological properties of PCL scaffolds in terms of supporting significantly enhanced cell proliferation and delayed bacterial adhesion. Collectively, the advances made in this work address key challenges in the application of hydrogels in tissue engineering and wound care, with future potential to be applied to solve practical clinical challenges.
URI: http://hdl.handle.net/11375/28497
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Toufanian_Samaneh_2023April_PhD.pdf
Access is allowed from: 2024-04-30
4.91 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue