Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28489
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorParise, Gianni-
dc.contributor.authorLesinski, Magda Alexandra-
dc.date.accessioned2023-05-02T18:44:13Z-
dc.date.available2023-05-02T18:44:13Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/28489-
dc.description.abstractINTRODUCTION: Following damaging stimuli, skeletal muscle exhibits coordinated interplay between intra- and extra-cellular processes resulting in satellite cell (SC) recruitment. SCs are known to play a central role in muscle plasticity post-injury by differentiating into myoblasts (MBL) and fusing with damaged tissue to donate myonuclei. Yet, their role within skeletal muscle remodeling through paracrine signaling remains to be fully elucidated. Thus, the purpose of this project was two-fold: 1) develop an in vitro model of MBL intercellular communication following myotube damage and 2) to determine if MBL proximity alone is adequate for improving tissue repair and reducing cellular stress during recovery. METHODS: C2C12 myotubes were exposed to 1 hour of electrical pulse stimulation (EPS) with 15Hz pulse for 5s and 5Hz pulse for 5s, separated by a 5s break. Myotubes were then introduced to non-electrically stimulated (NS) MBL adhered to a porous cell insert to allow paracrine signaling and samples were collected at varying timepoints post-EPS. RESULTS: EPS induced Z line sarcomeric disorganization and creatine kinase release into the cell culture media, which was mitigated in MBL+ groups (p<0.05). A significant main effect of MBL exposure was observed in EPS myotubes where MBL+ myotubes had greater Hsp70 gene expression, calpain 3 protein and gene expression, and t-ACC, p-ACCSer79, t-ULK, p-ULKSer555 protein expression than MBL- myotubes when recovering from EPS (p<0.05). A main effect of time was observed where B-dystroglycan and p-mTORSer2448 protein expression decreased in the EPS myotubes, and myotube diameter only decreased in the MBL+ condition (p<0.05). CONCLUSION: MBL signaling to damaged myotubes is evident and may increase catabolic processes through upregulating contraction-mediated protease activity and autophagy, as well as increase ATP generation through oxidative phosphorylation during regeneration.en_US
dc.language.isoenen_US
dc.subjectMuscle Physiologyen_US
dc.subjectSatellite Cellsen_US
dc.subjectCell Signalingen_US
dc.subjectElectrical Pulse Stimulationen_US
dc.titleInvestigating Fusion-Independent Roles of Muscle Progenitor Cells in Response to EPS-Induced Myotube Damageen_US
dc.typeThesisen_US
dc.contributor.departmentKinesiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractWhen muscle damage occurs, whether through rigorous exercise or physical trauma, the muscle relies on a specific group of stem cells to help repair itself. These stem cells, termed satellite cells, can migrate to specific sites of muscle damage, differentiate into myoblasts, and donate nuclei and genetic material to the injured muscle. This increase in nuclear content helps the muscle synthesize more protein to rebuild and regenerate and promotes muscle growth. However, when the satellite cell becomes dysfunctional, as seen in aging muscle and certain genetic conditions, the muscle struggles to repair itself in response to damage and cannot grow in response to exercise. Satellite cell biology has clearly defined the role of nuclear donation in muscle function, however very little is known about how this stem cell ‘talks’ to the muscle through signaling molecules. As such, this thesis elucidates the effect of myoblast signaling on electrically stimulated damaged immature muscle fibers, otherwise known as myotubes, by preventing myoblast-myotube physical interactions in cell culture experimentation. Interestingly, the data presented here demonstrate that myoblast exposure to damaged myotubes may increase muscle protein breakdown as myotube diameters are reduced in size acutely post-damage, likely resulting from the increase in protease and autophagy protein expression markers. Additionally, myoblast exposure to damaged myotubes may increase mitochondrial fatty acid oxidation to generate energy, which is the fuel of choice during muscle regeneration.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lesinski_Magda_A_2023-04_Master of Science in Kinesiology.pdf
Open Access
2.21 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue