Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28447
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSorensen, Erik-
dc.contributor.authorRichards, Addison-
dc.date.accessioned2023-04-24T15:03:29Z-
dc.date.available2023-04-24T15:03:29Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/11375/28447-
dc.description.abstractA complex arrangement of electronic states within materials can manifest exotic quantum-mechanical effects. These systems are often referred to as quantum materials. Increased understanding of quantum materials has historically lead to the development of new technologies. It is therefore extremely important to develop and test precise methods for calculating the behaviour of electronic states within a material. For decades, the workhorse of electronic structure calculations has been density functional theory (DFT). DFT is often referred to as a first-principles method because it allows for the calculation of the distribution of electrons throughout a material with only specification of the lattice geometry and atomic components. From the results of a DFT calculation, it is possible to study the orbital character of electronic wavefunctions, topology of electronic band structure, and some aspects of superconductivity. This provides insight into many quantum properties of a system which may otherwise be difficult or impossible to ascertain from experiments. DFT is, however, sometimes limited by the approximations necessary for practical implementation. Further methods have been developed to systematically correct the limitations of DFT. In particular, the combination of DFT with dynamical mean-field theory (DFT+DMFT) is among the most widely accepted methods for correcting the inadequacy of DFT in handling strong electron-electron correlations. In this thesis, I use methods from DFT and DFT+DMFT to study the quantum properties of materials.en_US
dc.language.isoenen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectDynamical Mean-Field Theoryen_US
dc.subjectQuantum Materialsen_US
dc.titleRealistic Electronic Structure Calculations for Quantum Materialsen_US
dc.typeThesisen_US
dc.contributor.departmentPhysics and Astronomyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Richards_Addison_202304_MSc.pdf
Access is allowed from: 2023-10-20
24.17 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue