Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Bridging the Gap: Fragmentation, filamentary feeding and cluster formation in the ISM

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Star formation is an inherently multi-scale process, connecting scales from the kiloparsecs of the galactic disk to the single AU scale of a protostar. In the middle of these scales are star clusters and molecular clouds, the structures in which most stars form. The clouds and clusters are connected via the interstellar medium, the gas and dust making up the matter between stars. In the cold phases of this medium rests the first steps of star formation, the formation of molecular gas and networks of filaments. This cold, neutral medium (CNM) hosts a handful of physical mechanisms, all contributing to the structures that feeds star formation. In this thesis work, we present a suite of simulations using the magneto-hydrodynamical code Ramses to investigate the role of turbulence, magnetic fields and cooling on the formation of filaments and clusters in the CNM. Through 9 different models we find that velocity dispersions in the CNM play a significant role in the formation of structure, requiring a balance between turbulence, self gravity and cooling to form filaments. We find magnetic fields, initialized at strengths of 7 muG, affect the formation of filaments, creating higher percentages of star-forming dense gas and lower percentages of molecular gas. Both magnetic fields and velocity dispersion in the gas affect the formation rate of clusters early in the simulation. Our 8 km/s simulations present a good initial condition for star formation that can include multiple scales of the process and recreate accurate clouds and filamentary structure.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By