Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/28001
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEl-Dakhakhni, Wael-
dc.contributor.authorSiam, Ali-
dc.date.accessioned2022-10-14T17:33:25Z-
dc.date.available2022-10-14T17:33:25Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/28001-
dc.description.abstractUnbonded post-tensioned concrete block (UPCB) shear walls are an effective seismic force resisting system due to their ability to contain expected damage attributed to their self-centering capabilities. A few design procedures were proposed to predict the in-plane flexural response of UPCB walls, albeit following only basic mechanics and/or extensive iterative methods. Such procedures, however, may not be capable of capturing the complex nonlinear relationships between different parameters that affect UPCB walls’ behavior or are tedious to be adopted for design practice. In addition, the limited datasets used to validate these procedures may render their accuracy and generalizability questionable, further hindering their adoption by practitioners and design standards. To address these issues, an experimentally-validated nonlinear numerical model was adopted in this study and subsequently employed to simulate 95 UPCB walls with different design parameters to compensate for the lack of relevant experimental data in the current literature. Guided by mechanics and using this database, an evolutionary algorithm, multigene genetic programming (MGGP), was adopted to uncover the relationships controlling the response of UPCB walls, and subsequently develop simplified closed-form wall behavior prediction expressions. Specifically, through integrating MGGP and basic mechanics, a penta-linear backbone model was developed to predict the load-displacement backbone for UPCB walls up to 20% strength degradation. Compared to existing predictive procedures, the prediction accuracy of the developed model and its closed-form nature are expected to enable UPCB wall adoption by seismic design standards and code committees.en_US
dc.language.isoenen_US
dc.subjectbackbone modelen_US
dc.subjectconcrete block wallen_US
dc.subjectAnalytical approachen_US
dc.subjectmultigene genetic programmingen_US
dc.titleA Hybrid Mechanics-evolutionary Algorithm-derived Backbone Model for Unbonded Post-tensioned Concrete Block Shear Wallsen_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Siam_Ali_2022Sep_MASc.pdf
Access is allowed from: 2024-09-27
3.12 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue