Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27966
Title: ACUTE MYELOID LEUKEMIA AND THE BONE MARROW MICROENVIRONMENT
Other Titles: FRIENDS OR FOES? ACUTE MYELOID LEUKEMIA AND THE BONE MARROW MICROENVIRONMENT
Authors: Prabagaran, Pradhariny
Advisor: Berg, Tobias
Department: Biochemistry and Biomedical Sciences
Keywords: Leukemia;Adipocytes;Bone marrow microenvironment
Publication Date: Nov-2022
Abstract: Acute myeloid leukemia (AML) is an aggressive cancer of the blood and bone marrow, affecting 1,100 Canadians annually. Older patients make up 75% of cases yet have the lowest survival rates due to the lack of tolerable treatments. Recently, the combination of Venetoclax and Azacitidine (Ven/Aza) has shown great therapeutic promise, however, chemoresistance has become a growing concern. Current evidence points towards a chemoprotective role from the bone marrow (BM) microenvironment, specifically by BM-derived mesenchymal stromal cells (BMSCs) and adipocytes. AML cells can manipulate BMSCs and adipocytes to create a niche that supports its own growth and evades chemotherapy. However, the role of the microenvironment in Ven/Aza chemoresistance has yet to be studied. Our objective was to study the ability of the microenvironment cells to induce AML chemoresistance to Ven/Aza. We employed a 2-dimensional direct contact co-culture system between MOLM-13 AML cells and BMSCs or adipocytes in both the absence and presence of Ven/Aza to determine the effects on the AML cells. In the absence of Ven/Aza, adipocyte co-cultured AML cells showed a 47% reduction in proliferation, 10% reduction in viability, yet a 1.7-fold increase in Maximal respiration when compared to the monocultured cells. In the presence of Ven/Aza, adipocyte co-cultured AML cells showed a significant increase in both proliferation and viability. Preliminary work investigating the mechanism of action of this support points toward an anti-apoptotic mechanism mediated by the upregulation of MCL-1 upon co-culture with adipocytes. Combination of Venetoclax and Tapotoclax, an MCL-1 inhibitor, abrogated the chemoprotection provided by BMSCs and adipocytes. Overall, our data suggests a dual role of adipocytes, where their inhibition or support of AML is context dependent. Therapeutic targeting of mechanisms for adipocyte chemoprotection such as MCL-1 upregulation may re-sensitize AML cells to Ven/Aza, thereby improving patient outcomes.
URI: http://hdl.handle.net/11375/27966
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Prabagaran_Pradhariny_FinalSubmission2022September_MSc.pdf
Access is allowed from: 2023-09-04
1.6 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue