Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27789
Title: Type VIIb secretion system effector export and neutralization
Other Titles: Mechanistic insights into type VIIb secretion system effector export and neutralization
Authors: Klein, Timothy
Advisor: Whitney, John
Department: Biochemistry and Biomedical Sciences
Keywords: type VII secretion;bacterial protein secretion;interbacterial competition;protein structure
Publication Date: Nov-2022
Abstract: The type VII secretion system is a protein export pathway linked to diverse phenotypes in both Actinobacteria and Firmicutes. The Actinobacterial subtype of the T7SS, referred to as T7SSa, has been shown to play a critical role in various aspects of Mycobacterial life including virulence, conjugation, and metal homeostasis. The T7SSb of Firmicutes bacteria on the other hand has similarly been shown to influence virulence but by the direct growth inhibition of competitor bacteria. Structure-function analyses of the T7SSa apparatus as well as various effectors and chaperones have begun to build a more mechanistic understanding of how T7SSa functions. In contrast, we know little of how the T7SSb functions despite its noted importance to both pathogens and environmental bacteria such as Bacillus, Staphylococcus, Enterococcus, and Streptococcus. During my thesis work, I have addressed several gaps in our understanding of T7SSb function. The three major questions that I have studied are: (1) how do T7SSb immunity proteins inhibit the toxicity of their cognate toxins, (2) how does the T7SSb export effectors through the thick Gram-positive cell wall, and (3) what is the role of chaperone proteins in facilitating T7SSb effector export?
URI: http://hdl.handle.net/11375/27789
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Klein_Timothy_A_2022_PhD.pdf
Access is allowed from: 2023-07-28
26.22 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue