Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27620
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKhan, Waliul-
dc.contributor.authorHaq, Sabah-
dc.date.accessioned2022-06-13T19:29:35Z-
dc.date.available2022-06-13T19:29:35Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/27620-
dc.description.abstractAutophagy, an intracellular degradation, and recycling process is essential in maintaining cellular homeostasis. Dysregulated autophagy is linked to the pathogenesis of various diseases, including inflammatory bowel disease (IBD) which consists of Crohn’s disease and ulcerative colitis. In IBD, enterochromaffin cell numbers and one of its main product serotonin (5-hydroxytryptamine; 5-HT) levels are elevated. Previously, we had shown that tryptophan hydroxylase 1 deficient (Tph1-/-) mice, with reduced gut 5-HT had decreased severity of colitis. Here, we showed that gut 5-HT plays a vital role in modulating autophagy and thus regulating gut microbial composition and susceptibility to intestinal inflammation. Tph1-/- mice, had upregulated colonic autophagy via the mammalian target of rapamycin pathway (mTOR), and decreased colitis severity. Tph1-/- mice after 5-HT replenishment, and serotonin reuptake transporter deficient (SERT-/-) mice, which have increased 5-HT levels, showed converse results. Deletion of intestinal epithelial cell-specific autophagy gene, Atg7, in Tph1-/- mice (DKO mice) abolished the protective effect of Tph1 deficiency in colitis, decreased the production of antimicrobial peptide, β-defensin 1 and promoted colitogenic microbiota. Furthermore, using cecal microbial transplantation, we found that the colitic microbiota of the DKO mice contributed to the increased severity of colitis. Supporting this pathway's translational importance, we uncovered that 5-HT treatment of peripheral blood mononuclear cells from both healthy volunteers and patients with Crohn’s disease inhibited autophagy via the mTOR pathway. Our results in this thesis emphasize the role of 5-HT-autophagymicrobiota axis in intestinal inflammation. Moreover, these findings suggest 5-HT as a novel therapeutic target in intestinal inflammatory disorders such as IBD that exhibit dysregulated autophagy.en_US
dc.language.isoenen_US
dc.subject5-HTen_US
dc.subjectAutophagyen_US
dc.subjectInflammationen_US
dc.subjectIntestineen_US
dc.titleRole of Serotonin-Autophagy Axis in Intestinal Inflammationen_US
dc.typeThesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractApproximately 0.7% of Canadians are currently affected with inflammatory bowel disease (IBD). The gut hormone serotonin, which regulates many normal functions, is elevated in gut inflammation. Reduced serotonin levels decrease the severity of inflammation. IBD pathology has been linked to a unique cell self-eating process called autophagy. Using cell lines, mice, and samples from IBD patients, we assessed the interactions between serotonin signaling and autophagy during gut inflammation. I found that an increase in serotonin levels enhances the severity of gut inflammation by inhibiting autophagy. We also established the connection between serotonin and autophagy in the intestinal epithelial cells, and how this modulates epithelial cell function. Furthermore, we demonstrated the establishment of an altered gut microbiota upon disruption of the serotonin-autophagy axis in the epithelial cells, which subsequently influenced gut inflammation severity. Thus, we identified one of the key triggers related to the pathogenesis and severity of IBD.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Haq_Sabah_finalsubmission2022June_PhD.pdf
Open Access
63.7 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue