Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27521
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRullo, Anthony-
dc.contributor.authorTurner, Rebecca-
dc.date.accessioned2022-05-04T14:56:46Z-
dc.date.available2022-05-04T14:56:46Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/11375/27521-
dc.description.abstractImmune recruiters are small molecule immunotherapeutics which redirect endogenous components of the immune system to target cells to elicit anti-cancer responses. Current immune recruiters made in the Rullo Lab are heterobispecific molecules which bind receptors on cancer cells and ligand-specific antibodies. Upon antibody binding, a proximity-induced covalent reaction with nearby nucleophilic residues installs a targeting ligand onto the protein. The resultant antibody conjugate then facilitates cancer killing through immune cell recruitment. Covalency circumvents limited binding affinity of the ligand•antibody complex, however antibody•immune receptor affinity remains an issue. This thesis presents an alternative immune recruiting strategy through direct engagement of effector immune cells; monocyte covalent immune recruiters (mCIRs). mCIRs utilize a monocyte specific peptide (cp33) to bind CD64, an activating receptor on monocytes. By incorporating a sulfonyl fluoride electrophile onto the N-terminus of cp33, selective covalent labelling of CD64 was achieved within 24 h. Furthermore, mCIRs demonstrated enhanced monocyte function relative to antibody recruiting platforms. However, these constructs have demonstrated that the order of addition to the target receptor then to CD64 is critical for bridging the two species. As a result, the effect of covalency on complex simplification and monocyte function has yet to be determined. Despite this, mCIRs represent a covalent immune recruitment strategy with the potential to address shortcomings of antibody-based therapeutics.en_US
dc.language.isoenen_US
dc.subjectimmunotherapeuticen_US
dc.subjectprotein labellingen_US
dc.subjectimmune recruitmenten_US
dc.subjectpeptide synthesisen_US
dc.titleMonocyte Covalent Immune Recruiters: Tools to Modulate Synthetic Immune Recognitionen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Turner_Rebecca_C_202204_MSc.pdf
Open Access
14.87 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue