Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Student Publications (Not Graduate Theses)
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27455
Title: Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study
Authors: Tedesco, James
Lee, Bryan E J
Lin, Alex Y W
Binkley, Dakota M
Delaney, Kathleen H
Kwiecien, Jacek M
Grandfield, Kathryn
Department: Materials Science and Engineering
Publication Date: 2017
Publisher: Hindawi - The International Journal of Dentistry
Abstract: In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.
URI: http://hdl.handle.net/11375/27455
ISSN: 10.1155/2017/5920714
10.1155/2017/5920714
Other Identifiers: 10.1155/2017/5920714
Appears in Collections:Student Publications (Not Graduate Theses)

Files in This Item:
File Description SizeFormat 
2017_International_Journal_of_Dentistry_Tedesco_etal.pdf
Open Access
5.64 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue