Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27330
Title: Tuning and Optimising Concept Drift Detection
Authors: Do, Ethan Quoc-Nam
Advisor: Chiang, Fei
Department: Computing and Software
Keywords: concept drift;anomaly detection;concept drift detection
Publication Date: 2021
Abstract: Data drifts naturally occur in data streams due to seasonality, change in data usage, and the data generation process. Concepts modelled via the data streams will also experience such drift. The problem of differentiating concept drift from anomalies is important to identify normal vs abnormal behaviour. Existing techniques achieve poor responsiveness and accuracy towards this differentiation task. We take two approaches to address this problem. First, we extend an existing sliding window algorithm to include multiple windows to model recently seen data stream patterns, and define new parameters to compare the data streams. Second, we study a set of optimisers and tune a Bi-LSTM model parameters to maximize accuracy.
URI: http://hdl.handle.net/11375/27330
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
do_ethan_quoc-nam_202112_masc.pdf
Open Access
4.14 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue