Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27237
Title: Multi-Object Tracking Using Dual-Attention with Regional-Representation
Authors: Chen, Weijian
Advisor: (Kiruba) Kirubarajan, Thia
(Thamas) Tharmarasa, Ratnasingham
Department: Electrical and Computer Engineering
Keywords: Multi-Object Tracking;Deep Learning;Self-Attention
Publication Date: 2021
Abstract: Nowadays, researchers have shown convolutional neural network (CNN) can achieve an improved performance in multi-object tracking (MOT) by performing detection and re-identification (ReID) simultaneously. Many models have been created to overcome challenges and bring the state-of-the-art performance to a new level. However, due to the fact the CNN models only utilize feature from a local region, the potential of the model has not been fully utilized. The long range dependencies in spatial domain are usually difficult for a network to capture. Hence, how to obtain such dependencies has become the new focus in MOT field. One approach is to adopt the self-attention mechanism named transformer. Since it was successfully transferred from natural language processing to computer vision, many recent works have implemented it to their trackers. With the introduce of global information, the trackers become more robust and stable. There are also traditional methods which are re-designed in the manner of CNN and achieve satisfying performance such as optical flow. It can generate a correlated relation between feature maps and also obtain non-local information. However, the introduces of these mechanism usually causes a significant surge in computational power and memory. They also requires huge amount of epochs to train thus the training time is largely increased. To solve this issue, we propose a new method to gather non-local information based on the existing self-attention methods, we named it dual attention with regional-representation, which significantly reduces the training time as well as the inference time, but only causes a small increase in computational memory and are able to run with a reasonable speed. Our experiments shows this module can help the ReID be more stable to improve the performance in different tasks.
URI: http://hdl.handle.net/11375/27237
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Chen_Weijian_202112_MASc.pdf
Open Access
62.35 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue