Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27063
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSwartz, Christopher-
dc.contributor.authorBoucheikhchoukh, Ariel-
dc.date.accessioned2021-10-14T16:30:13Z-
dc.date.available2021-10-14T16:30:13Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/27063-
dc.description.abstractThe focus of this work is an industrial refinery model developed by TotalEnergies SE. The model is a sparse, large-scale, nonconvex, mixed-integer nonlinear program (MINLP). The nonconvexity of the problem arises from the many bilinear, trilinear, fractional, logarithmic, exponential, and sigmoidal terms. In order to account for various sources of uncertainty in refinery planning, the industrial refinery model is extended into a two-stage stochastic program, where binary scheduling decisions must be made prior to the realization of the uncertainty, and mixed-integer recourse decisions are made afterwards. Two case studies involving uncertainty are formulated and solved in order to demonstrate the economic and logistical benefits of robust solutions over their deterministic counterparts. A full-space solution strategy is proposed wherein the integrality constraints are relaxed and a multi-step initialization strategy is employed in order to gradually approach the feasible region of the multi-scenario problem. The full-space solution strategy was significantly hampered by difficulties with finding a feasible point and numerical problems. In order to facilitate the identification of a feasible point and to reduce the incidence of numerical difficulties, a hybrid surrogate refinery model was developed using the ALAMO modelling tool. An evaluation procedure was employed to assess the surrogate model, which was shown to be reasonably accurate for most output variables and to be more reliable than the high-fidelity model. Feasible solutions are obtained for the continuous relaxations of both case studies using the full-space solution strategy in conjunction with the surrogate model. In order to solve the original MINLP problems, a decomposition strategy based on the generalized Benders decomposition (GBD) algorithm is proposed. The binary decisions are designated as complicating variables that, when fixed, reduce the full-space problem to a series of independent scenario subproblems. Through the application of the GBD algorithm, feasible mixed-integer solutions are obtained for both case studies, however optimality could not be guaranteed. Solutions obtained via the stochastic programming framework are shown to be more robust than solutions obtained via a deterministic problem formulation.en_US
dc.language.isoenen_US
dc.subjectrefinery planningen_US
dc.subjectstochastic programmingen_US
dc.subjectsurrogate modellingen_US
dc.subjectgeneralized Benders decompositionen_US
dc.titleStochastic Multiperiod Optimization of an Industrial Refinery Modelen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
boucheikhchoukh_ariel_a_finalsubmission202109_masc.pdf
Access is allowed from: 2022-08-31
1.86 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue