Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26982
Title: DEVELOPMENT OF ADAPTIVE PVD COATED ADVANCED COMPOSITE (CERMET) TOOLS FOR HIGH-SPEED DRY MACHINING OF STAINLESS STEEL
Authors: Patel, Uttkarsh Sandeepbhai
Advisor: Veldhuis, Stephen
Department: Mechanical Engineering
Keywords: Built-up edge;Stainless steel;Notch;Wear;Tool life;PVD;Coating;Cermet;dry machining;high speed machining;TiAlCrN;AlCrN;TiAlCrSiYN;TiAlTaN;CrTiAlTaN
Publication Date: 2021
Abstract: Stainless steel is a metal material widely used in many industries because of its high tensile strength, toughness, and corrosion resistance. Machining stainless steel is challenging due to its high work hardening tendency, low thermal conductivity, and ductility of the material resulting in built-up edge formation. Machining stainless steel at lower cutting speeds must be performed with coolant, which adds to the cost of the process and increases concerns for the environment and the operator's health and safety. Industries such as the aerospace and die-mold industries demand high-speed machining to realize productivity targets. Therefore, a cermet tool material was selected for the present study because of its high temperature resistance, high bending strength, and fracture toughness. The study focused on investigating wear mechanisms and developing a coating on a cermet tool for dry high-speed machining stainless steel to increase tool life. The wear mechanisms of tools were investigated at a fixed cutting interval in relation to the tool's composition and microstructure. Scanning Electron Microscope (SEM) was used to study the microstructure and identify elements on the tool. X-ray diffraction (XRD) was used to identify the phases and concentrations of key elements on the tool. The new advanced in-house coating was developed with Super Fine Cathode (SFC) technology on a Kobelco AIP-20 Physical Vapour Deposition (PVD) coater. The micromechanical properties of the commercial coating and in-house coatings were investigated with the help of nanoindentation and scratch tests. Atomic Force Microscopy (AFM) and SEM were used to investigate the coating microstructure and surface topography. An Alicona variable focus 3D microscope was used to investigate wear volume and wear behaviour. It was discovered that various secondary carbides used by manufacturers to manufacture cermet tools change the microstructure, which affects the machining performance of the cermet tool material. Microchipping at the depth of cut (DOC) causes catastrophic notch wear. It was found that the developed in-house coatings were able to delay the initial wear (microchipping), which improved the tool's life by 318%. This research contributes to meeting the manufacturing industry's challenging demand for dry-high speed machining with reduced manufacturing costs.
URI: http://hdl.handle.net/11375/26982
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Patel_Uttkarsh_S_2021September_Ph.D.pdf
Access is allowed from: 2023-12-31
6.44 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue