Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26921
Title: Analogue Hawking radiation as a logarithmic quantum catastrophe
Authors: Farrell, Liam
Advisor: O'Dell, Duncan
Department: Physics and Astronomy
Keywords: Black holes;Hawking radiation;Catastrophe theory;Logarithmic catastrophe theory;Caustics;Quantum mechanics;Bose-Einstein condensate;Analogue black holes;Higher-energy theory;Saddle-point method;Airy function;Pearcey function;Bifurcation
Publication Date: 2021
Abstract: Caustics are regions created by the natural focusing of waves. Some examples include rainbows, spherical aberration, and sonic booms. The intensity of a caustic is singular in the classical ray theory, but can be smoothed out by taking into account the interference of waves. Caustics are generic in nature and are universally described by the mathematical theory known as catastrophe theory, which has successfully been applied to physically describe a wide variety of phenomena. Interestingly, caustics can exist in quantum mechanical systems in the form of phase singularities. Since phase is such a central concept in wave theory, this heralds the breakdown of the wave description of quantum mechanics and is in fact an example of a quantum catastrophe. Similarly to classical catastrophes, quantum catastrophes require some previously ignored property or degree of freedom to be taken into account in order to smooth the phase divergence. Different forms of spontaneous pair-production appear to suffer logarithmic phase singularities, specifically Hawking radiation from gravitational black holes. This is known as the trans-Planckian problem. We will investigate Hawking radiation formed in an analogue black hole consisting of a flowing ultra-cold Bose-Einstein condensate. By moving from an approximate hydrodynamical continuum description to a quantum mechanical discrete theory, the phase singularity is cured. We describe this process, and make connections to a new theory of logarithmic catastrophes. We show that our analogue Hawking radiation is mathematically described by a logarithmic Airy catastrophe, which further establishes the plausibility of pair-production being a quantum catastrophe
Description: Masters thesis of Liam Farrell, under the supervision of Dr. Duncan O'Dell. Successfully defended on August 26, 2021.
URI: http://hdl.handle.net/11375/26921
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Farrell_Liam_M_2021August_MSc.pdf
Open Access
6.84 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue