Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26919
Title: The Effects of Perception-Action Coupling on Compromised Human Locomotion: A Proposed Research Program
Authors: De Melo, Kristen
Advisor: Lyons, Jim
Department: Kinesiology
Keywords: Perception-Action, Optic Flow, Compromised Gait, Locomotion, Vision, Ecological Theory
Publication Date: 2021
Abstract: There is considerable evidence suggesting an innate linkage between the human perceptual and motor systems, which evolve together and assist one another in the production and coordination of movement. A major contributor to this relationship is optic flow, providing movement variables such as navigation, obstacle avoidance, and depth perception. The absence of optic flow leads to the decoupling of perception and action, which has been shown to contribute to decrements in human movement (i.e., negatively impacted locomotion and posture, and slower adaptation to gait perturbations). Despite the importance of maintaining this linkage, optic flow manipulations are often found to be underrepresented in locomotion literature when specifically related to rehabilitation training (i.e., treadmills). This may be a contributor to the lengthy and exhaustive treatment plans. The literature has shown instances where reintroducing optic flow into training protocols has shown larger gait improvements in shorter times than typical ambulation protocols, however, the strength of the perception-action linkage in adulthood is still not well understood and its impact not yet fully explored. Therefore, the current research program aims to fill this gap by evaluating how the reintroduction of optic flow into atypical gait training protocols in both healthy and gait-compromised individuals may provide evidence that could be used to enhance rehabilitative outcomes. This series of conceptually related experiments explores outcome enhancements through neuromuscular level changes (Study One), the recalibration process of perception-action given newly acquired physical constraints (Study Two), and on larger scale gait cycle performances in a rehabilitation setting (Study Three). It is hypothesized that perception- action coupling will lead to increases in neuromuscular elicitation in the absence of voluntary movement (Study One), assist the recalibration process to improve measures of spatial awareness and atypical gait parameters (Study Two), and finally, improve rehabilitative outcomes in a spinal cord injury (SCI) ambulation protocol, both objectively (i.e., gait parameters, dynamic balance, SCI measures) and subjectively (i.e., questionnaires) (Study Three).
URI: http://hdl.handle.net/11375/26919
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
De Melo_Kristen_T_202109_MSc.pdf
Open Access
4.08 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue