Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26624
Title: A comparison of the physical radiation-induced bystander effect and peroxide-mediated oxidative stress in human and murine epithelial cells
Authors: Rusin, Andrej
Advisor: Mothersill, Carmel
Department: Biology
Keywords: Radiation-induced bystander effect; ultraviolet radiation; non-targetted effects of ionizing radiation; melanin
Publication Date: 2021
Abstract: The effects of low doses of ionizing radiation on living things is a continually evolving area of research. Importantly, low dose effects were historically overlooked and not properly accounted for the assessment of risk to human health, as is the case with the contentious linear no-threshold model. These low dose effects are now known to be relevant to human health in both accidental and intentional exposures, including doses relevant to medical diagnostics and therapeutics. Furthermore, there is a relative dearth of information on low dose effects in non-human species, which necessitates further investigation and evaluation of radiosensitivity. Radiation-induced bystander effects occur in organisms due to the receipt of signals from directly irradiated cells, which act to communicate radiation damage to surrounding cells. Recent research has identified one type of bystander signal which is carried by photons of biological origin, however the effects produced in bystander cells receiving these photons has not been extensively investigated. It was suspected, based on previous research, that reactive oxygen species participate in the manifestation of this bystander effect. Three mammalian cell lines were assessed for their ability to produce bystander photons upon direct irradiation; subsequently, radiologically unexposed cells were exposed to the resulting photons and assayed for biological effects. The human cell lines used exhibited significant photon emissions and oxidative stress, clonogenic cell death, reduced cellular metabolism, and compromised mitochondrial oxidative phosphorylation following exposure to these photons. The use of a melanocyte cell line indicated that these effects are attenuated by melanin, and this is suspected to occur through photoabsorption or antioxidant mechanisms. Additionally, the same assays were conducted following cell exposure to hydrogen peroxide at low concentrations to assess responses to oxidative stress relevant to bystander responses, indicating less overall sensitivity in the examined melanocytes. These findings are significant because they contribute to our understanding of the mechanisms behind low dose biological effects, because they further challenge the linear no-threshold model and other models based on target theory, because they provide evidence for differential responses to the physical bystander signal in non-human species, and because secondary photon emissions are likely relevant to the medical radiation sciences.
URI: http://hdl.handle.net/11375/26624
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
rusin_andrej_finalsubmission2021May_msc.pdf
Open Access
4.23 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue