Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Engineering
  4. Department of Chemical Engineering
  5. Chemical Engineering Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26465
Title: Hyaluronan incorporation into model contact lens hydrogels as a built-in lubricant: Effect of hydrogel composition and proteoglycan 4 as a lubricant in solution
Authors: Samsom M
Korogiannaki M
Subbaraman LN
Sheardown H
Schmidt TA
Department: Chemical Engineering
Keywords: biotribology;hyaluronan;hydrogel;lubrication;proteoglycan 4;Contact Lenses, Hydrophilic;Friction;Humans;Hyaluronic Acid;Hydrogels;Lubricants;Materials Testing;Proteoglycans;Wettability
Publication Date: Jul-2018
Publisher: Wiley
Abstract: Contact lens friction significantly correlates with subjective comfort. Hyaluronan (HA) and proteoglycan 4 (PRG4) are natural boundary lubricants present in the body. The objective of this study was to assess the effect of crosslinked HA into the bulk of model contact lens materials pHEMA, pHEMA/TRIS, and DMAA/TRIS on surface wettability, protein sorption, and boundary lubricating properties at a material-cornea biointerface, both alone and synergistically with PRG4 in solution. Surface wettability was assessed by water contact angle measurement, protein sorption by lysozyme sorption assay, and boundary lubricating properties using an in vitro friction test method. HA incorporation (HAinc ) increased the surface wettability of all materials, and reduced protein sorption for pHEMA and DMAA/TRIS. HAinc increased friction for pHEMA, and DMAA/TRIS, whereas a decrease was observed for pHEMA/TRIS. A combination of HAinc and PRG4sol had a synergistic effect of reducing friction only for pHEMA/TRIS. This combination had similar friction reduction compared with PRG4sol alone for DMAA/TRIS. These results indicate HA incorporation could be an effective internal wetting agent, antiadhesive, and boundary lubricant for pHEMA/TRIS silicone hydrogels. In conclusion, HA incorporation can reduce friction of hydrogels alone and in combination with PRG4 in solution, though in a hydrogel composition-dependent (e.g., TRIS) manner. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1818-1826, 2018.
URI: http://hdl.handle.net/11375/26465
metadata.dc.identifier.doi: https://doi.org/10.1002/jbm.b.33989
ISSN: 1552-4973
1552-4981
Appears in Collections:Chemical Engineering Publications

Files in This Item:
File Description SizeFormat 
Samson JBMR_B 2018.pdf
Open Access
Accepted version798.65 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue