Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Engineering
  4. Department of Chemical Engineering
  5. Chemical Engineering Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26440
Title: Impact of a Hyaluronic Acid-Grafted Layer on the Surface Properties of Model Silicone Hydrogel Contact Lenses
Authors: Korogiannaki M
Jones L
Sheardown H
Department: Chemical Engineering
Keywords: Science & Technology;Physical Sciences;Technology;Chemistry, Multidisciplinary;Chemistry, Physical;Materials Science, Multidisciplinary;Chemistry;Materials Science;ANGLE-RESOLVED XPS;THIOL-ENE;WETTABILITY;POLYMER;BIOMATERIALS;EYE;UV;GLYCOSAMINOGLYCANS;PHOSPHORYLCHOLINE;PUREVISION(TM)
Publication Date: 29-Jan-2019
Publisher: American Chemical Society (ACS)
Abstract: The introduction of high oxygen transmissibility silicone hydrogel lenses ameliorated hypoxia-related complications, making them the most prescribed type of contact lens (CL). Despite the progress made over the last 2 decades to improve their clinical performance, symptoms of ocular dryness and discomfort and a variety of adverse clinical events are still reported. Consequently, the rate of CL wear discontinuation has not been appreciably diminished by their introduction. Aiming to improve the interfacial interactions of silicone hydrogel CLs with the ocular surface, a biomimetic layer of hydrophilic glycosaminoglycan hyaluronic acid (HA) (100 kDa) was covalently attached to the surface of model poly(2-hydroxyethyl methacrylate- co-3-methacryloxypropyl-tris-(trimethylsiloxy)silane) (pHEMA- co-TRIS) silicone hydrogel materials via UV-induced thiol-ene "click" chemistry. The surface structural changes after each modification step were studied by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). Successful grafting of a homogeneous HA layer to the surface of the model silicone hydrogels was confirmed by the consistent appearance of N (1s) and the significant decrease of the Si (2p) peaks, as determined by low-resolution angle-resolved XPS. The HA-grafted surfaces demonstrated reduced contact angles, dehydration rate, and nonspecific deposition of lysozyme and albumin, while maintaining their optical transparency (>90%). In vitro studies demonstrated that the HA-grafted pHEMA- co-TRIS materials did not show any toxicity to human corneal epithelial cells. These results suggest that surface immobilization of HA via thiol-ene "click" chemistry can be used as a promising surface treatment for silicone hydrogel CLs.
URI: http://hdl.handle.net/11375/26440
metadata.dc.identifier.doi: https://doi.org/10.1021/acs.langmuir.8b01693
ISSN: 0743-7463
1520-5827
Appears in Collections:Chemical Engineering Publications

Files in This Item:
File Description SizeFormat 
Korogiannaki Langmuir 2019 open.pdf
Open Access
Accepted version1.31 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue