Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26367
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDidar, Tohid-
dc.contributor.authorLadouceur, Liane-
dc.date.accessioned2021-04-28T20:08:08Z-
dc.date.available2021-04-28T20:08:08Z-
dc.date.issued2021-04-
dc.identifier.urihttp://hdl.handle.net/11375/26367-
dc.description.abstractThough the past two decades have seen a dramatic increase in research toward self-cleaning repellent surfaces, multiple challenges exist in the creation of biorepellent surfaces for everyday use. Environmental concerns persist with many of the chemicals utilized in this field and the need for scalable, low-cost alternatives remains. Spread of pathogens including bacteria and viruses in healthcare and public settings also presents a need for stable surfaces. In the work presented here, we report on the current status of antimicrobial nanomaterials and coatings toward virus repellency, followed by an investigation into the application of polysiloxane nanostructures in creation of flexible hierarchical surfaces. Using n-propyltrichlorosilane (n-PTCS) coated on activated polyolefin (PO) we were able to demonstrate superhydrophobicity, reporting water contact angles above 153° paired with <1° sliding angles on hierarchical surfaces. A transfer assay, that closely mimics contact with high-touch surfaces, using Escherichia coli K-12 transfected with green fluorescent protein (GFP) reported a 1.6-log (97.5%) reduction in fluorescence on surfaces compared to planar PO controls, paired with a 1.2-log (93%) reduction in CFU/mL in comparison to control groups. Additionally, surfaces demonstrated a contact angle of 140.8° with citrated whole blood. Droplets of blood incubated on our surfaces for 15 min showed a 93% reduction in visible staining, while submersion in citrated whole blood for 20 minutes revealed an 87% reduction in blood adhered to the surfaces. The applications for these biorepellent surfaces have widespread potential, including the demonstrated need for prevention of surface contamination to minimize spread of hospital acquired infections (HAIs) within the healthcare system.en_US
dc.language.isoenen_US
dc.subjectHierarchical Surfacesen_US
dc.subjectPolysiloxane nanostructuresen_US
dc.subjectPathogen repellent surfacesen_US
dc.titleProducing Fluorine-Free Polysiloxane Hierarchical Structures as Highly Biorepellent Surfacesen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.description.layabstractThe goal of creating a surface capable of repelling biological samples continues to present challenges due to surface stability, scalability, and cost of manufacturing techniques. Beyond this, many of the existing solutions use fluorine-based chemicals that present a risk to the environment due to the difficulty in breaking down these molecules. This thesis aims to understand the current state of repellent surfaces used for biological applications, including prevention of surface contamination by bacteria and viruses, then investigates the use of more environmentally friendly methods to produce repellent surfaces. Using a silicone-based coating combined with heat induced shrinking of shape memory polymers (SMPs), we have created a flexible surface with multiscale roughness that demonstrates repellency to bacteria and whole blood.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ladouceur_Liane_2021April_MASc.pdf
Access is allowed from: 2022-04-26
3.46 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue