Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26358
Title: Role of Macrophage Scavenger Receptor 1 and Extracellular Double-Stranded RNA in Antiviral Cell Signaling
Other Titles: Antiviral Signaling Mechanisms of Extracellular dsRNA
Authors: Baid, Kaushal
Advisor: Mossman, Karen L.
Department: Biochemistry and Biomedical Sciences
Keywords: antiviral signaling;scavenger receptor;double-stranded RNA;type i IFN
Publication Date: 2021
Abstract: Recognition of non-self, pathogen-associated molecular patterns is a central component of host immune response to pathogens like viruses. Intracellular detection of viral nucleic acids leads to the production of type I interferons (IFN-I) and subsequent establishment of an antiviral state in infected and neighboring cells. Viruses have evolved multiple mechanisms to counteract IFN-I responses in infected cells, however, viral nucleic acids released from dying cells can stimulate IFN-I production in surrounding or distal uninfected cells. This thesis examines the mechanisms by which cells recognize extracellular viral nucleic acids and the subsequent downstream antiviral signaling. Class A scavenger receptors (SR-As) internalize extracellular viral double-stranded RNA (dsRNA) to mediate IFN-I responses, but little is known about extracellular viral DNA. We observed that extracellular DNA is recognized and internalized by SR-As in a manner like extracellular dsRNA. Furthermore, we established that SR-A1 is sufficient in mediating extracellular dsRNA-induced cellular responses and other nucleic acid receptors like SR-J1 and DEC-205 are dispensable. Finally, a direct interaction of RNA and DNA species was demonstrated with the coiled-coil collagenous domain of SR-A1, but not the scavenger receptor cysteine rich domain of SR-A6.We elaborated the role of SR-A1 by identifying the cellular processes activated through SR-A1 following uptake of extracellular dsRNA. Cytosolic sensors are essential in mediating an antiviral response to the endocytosed dsRNA, but the mechanism of endoplasmic release and cytoplasmic entry of dsRNA remains an enigma. We demonstrated that the lack of a dsRNA-channel, SIDT2, impaired the ability of the cells to mediate an antiviral response to extracellular dsRNA. Understanding host responses to extracellular viral nucleic acids will enable the development of novel vaccines and antiviral therapeutics against RNA and DNA viruses that efficiently counteract these responses in infected cells.
URI: http://hdl.handle.net/11375/26358
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
BAID_KAUSHAL_2021APRIL_PhD.pdf
Open Access
3.57 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue