Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Science
  4. Department of Biology
  5. Biology Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26264
Title: Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (Peromyscus maniculatus)
Authors: Robertson CE
McClelland GB
Department: Biology
Keywords: Endothermy;Metabolism;Muscle development;Thermogenesis;Adaptation, Biological;Age Factors;Altitude;Animals;Peromyscus;Phenotype;Shivering;Thermogenesis
Publication Date: 1-Nov-2019
Publisher: The Company of Biologists
Abstract: Many endotherms native to cold and hypoxic high-altitude (HA) environments have evolved a highly vascularized and aerobic skeletal muscle. This specialized muscle phenotype contributes via shivering to an enhanced capacity for aerobic thermogenesis (cold-induced V̇O2,max). However, it is unclear how selection at HA for shivering thermogenesis acts early in the development of small altricial mammals, which are born with immature skeletal muscles and without the capacity for homeothermic endothermy. We have previously shown that postnatal maturation of brown adipose tissue and non-shivering thermogenesis is delayed in HA native deer mouse pups (Peromyscus maniculatus). To assess whether HA adaptation has also altered the developmental program of skeletal muscle and shivering thermogenesis, we used laboratory-reared descendants of deer mice native to low altitude (LA, 430 m a.s.l.) and HA (4350 m a.s.l.) and a LA congeneric outgroup (P. leucopus). We found that LA juveniles were able to shiver robustly at 2 weeks after birth. However, HA juveniles were unlikely able to shiver at this point, resulting in a 30% lower capacity for thermoregulation compared with lowlanders. It was only at 27 days after birth that HA juveniles had established the aerobic muscle phenotype characteristic of HA adults and a superior cold-induced V̇O2,max compared with LA mice of the same age. The capacity for shivering may be delayed in HA mice to allow energy to be allocated to other important processes such as growth.
URI: http://hdl.handle.net/11375/26264
metadata.dc.identifier.doi: https://doi.org/10.1242/jeb.210963
ISSN: 0022-0949
1477-9145
Appears in Collections:Biology Publications

Files in This Item:
File Description SizeFormat 
jeb210963.full.pdf
Open Access
652.76 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue