Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26247
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFang, qiyin-
dc.contributor.authorXiong, Bo-
dc.date.accessioned2021-03-05T16:12:41Z-
dc.date.available2021-03-05T16:12:41Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/26247-
dc.description.abstractWater contaminations are currently threatening ecosystems and human health on a world-wide scale. Monitoring the water quality is one of the most essential steps to provide better understanding and mitigation of water contamination. Among the water quality monitoring techniques, optofluidic technologies have created a burgeoning number of novel devices designed to test water quality in an efficient and portable format. However, current optofluidic devices have yet to be successfully translated to onsite monitoring applications due to their high cost, high maintenance and dependence on delicate laboratory instruments or bulky instruments. In this work, we developed two optofluidic platforms for onsite water quality monitoring: a fluorescence-based optofluidic platform for chemical analysis and an imaging-based optofluidic platform for microbe detection. Several technologies associated to optical sensing modules were developed to overcome the above challenges, making the optofluidic platforms compatible with onsite monitoring applications. First, excitation coupling mechanism and frequency domain time-resolved fluorescence (TRF) were developed on the fluorescence-based optofluidic platform to improve sensing sensitivity and stability, while reducing dependence on costly instruments. Their effectiveness was demonstrated by dissolved oxygen (DO) measurements and ray-tracing simulation. Second, a low-cost and portable imaging system with dual modalities were developed on the imaging-based optofluidic platform. Thus, both morphological features and fluorescent features can be observed for microbe detection without using bulky microscope setups. The effectiveness of dual-modality imaging was demonstrated by experimental results of phytoplankton analysis. Third, a fluorescence lifetime imaging (FLIM) approach was developed under a low-cost (Complementary metal–oxide–semiconductor) CMOS format. This approach enables integrating FLIM module in portable optofluidic platforms for onsite monitoring. These advances bring optofluidic platforms closer to realizing the requirements of onsite water quality monitoring and provide a clear picture for future improvements and research directions.en_US
dc.language.isoenen_US
dc.subjectoptofludicsen_US
dc.subjectimagingen_US
dc.subjectsensingen_US
dc.subjectwater quality monitoringen_US
dc.titleAdvanced optofluidic sensing and imaging technologiesen_US
dc.title.alternativeAdvanced optofluidic sensing and imaging devices for onsite monitoringen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
xiong_bo_2021Feb_PhD.pdf.pdf
Access is allowed from: 2022-02-26
4.01 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue