Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Health Sciences
  4. Anesthesia
  5. Anesthesia Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26213
Title: Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain
Authors: Zhu YF
Ungard R
Seidlitz E
Zacal N
Huizinga J
Henry JL
Singh G
Department: Anesthesia
Keywords: Bone cancer;behaviour;dorsal root ganglion;electrophysiology;pain;primary afferent;prostate cancer;Action Potentials;Animals;Bone Neoplasms;Cancer Pain;Disease Models, Animal;Electrophysiological Phenomena;Ganglia, Spinal;Male;Models, Neurological;Nerve Fibers;Neural Conduction;Nociceptors;Osteolysis;Pain Threshold;Rats;Time Factors
Publication Date: Jan-2016
Publisher: SAGE Publications
Abstract: BACKGROUND: Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model. RESULTS: In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test. Subsequently, we recorded intracellularly from dorsal root ganglion neurons in vivo in anesthetized animals. Neurons remained connected to their peripheral receptive terminals and were classified on the basis of action potential properties, responses to dorsal root stimulation, and to mechanical stimulation of the respective peripheral receptive fields. Neurons included C-, Aδ-, and Aβ-fibre nociceptors, identified by their expression of substance P. We suggest that bone tumour may induce phenotypic changes in peripheral nociceptors and that these could contribute to bone cancer pain. CONCLUSIONS: This work represents a significant technical and conceptual advance in the study of peripheral nociceptor functions in the development of cancer-induced bone pain. This is the first study to report that changes in sensitivity and excitability of dorsal root ganglion primary afferents directly correspond to mechanical allodynia and hyperalgesia behaviours following prostate cancer cell injection into the femur of rats. Furthermore, our unique combination of techniques has allowed us to follow, in a single neuron, mechanical pain-related behaviours, electrophysiological changes in action potential properties, and dorsal root substance P expression. These data provide a more complete understanding of this unique pain state at the cellular level that may allow for future development of mechanism-based treatments for cancer-induced bone pain.
URI: http://hdl.handle.net/11375/26213
metadata.dc.identifier.doi: 10.1177/1744806916628778
ISSN: 1744-8069
1744-8069
Appears in Collections:Anesthesia Publications

Files in This Item:
File Description SizeFormat 
Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of .pdf
Open Access
Published version1.01 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue