Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26089
Title: The Nernst-Planck-Poisson Reactive Transport Model for Concrete Carbonation and Chloride Diffusion in Carbonated and Non-carbonated Concrete
Authors: Alsheet, Feras
Advisor: Razaqpur, A. Ghani
Department: Civil Engineering
Keywords: Chloride;Concrete durability;Carbonation;Nernst-Planck-Poisson model;Reactive transport;Combined carbonation and chloride;Finite element;NPP;Diffusion;Electromigration;Fick’s law;Ionic activity
Publication Date: 2020
Abstract: The intrusion of chlorides and carbon dioxide into a reinforced concrete (RC) structure can initiate corrosion of the reinforcing steel, which, due to its expansive nature, can damage the structure and adversely affects its serviceability and safety. Corrosion will initiate if at the steel surface the concrete free chloride concentration exceeds a defined limit, or its pH falls below a critical level. Hence, determination of the time to reaching these critical limits is key to the assessment of RC structures durability and service life. Due to the ionic nature of the chlorides and the bicarbonate anion (HCO3-) formed by the CO2 in the multi-ionic pore solution, the transport of both species is driven by Fickian diffusion combined with electromigration and ionic activity, which can be mathematically expressed by the Nernst-Planck-Poisson (NPP) equations. For a complete representation of the phenomenon, however, the NPP equations must be supplemented by the relevant chemical equilibrium equations to ensure chemical balance among the various species within the concrete pore solution. The combination of NPP with the chemical equilibrium equations is often termed the NPP reactive transport model. In this study, such a model is developed, coded into the MATLAB platform, validated by available experimental data, and applied to analyze the time-dependent concrete carbonation and the movement of chlorides in carbonated and non-carbonated concrete. The results of these analyses can be used to predict the time to corrosion initiation. The transient one-dimensional governing equations of NPP are numerically solved using the Galerkin’s finite element formulation in space and the backward (implicit) Euler scheme in the time domain. The associated system of chemical equilibrium equations accounts for the key homogeneous and heterogeneous chemical reactions that take place in the concrete during carbonation and chlorides transport. At each stage of the analysis, the effects of these reactions on the changes in the pore solution chemical composition, pH, cement chloride binding capacity, concrete porosity, and the hydrated cement solids volumetric ratio are determined. The study demonstrates that given accurate input data, the presently developed NPP reactive transport model can accurately simulate the complex transport processes of chlorides and CO2 in concrete as a reactive porous medium, and the ensuing physical and chemical changes that occur due to the reaction of these species with the pore solution and the other cement hydration products. This conclusion is supported by the good agreement between results of the current analyses with the corresponding available experimental data from physical tests involving carbonation, and chloride diffusion in non-carbonated and carbonated concrete.
URI: http://hdl.handle.net/11375/26089
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Alsheet_Feras_2020_11_Ph.D..pdf
Access is allowed from: 2021-12-10
2.04 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue