Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26035
Title: Development of Robust Biofunctional Interfaces for Applications in Selfcleaning Surfaces, Lab-Ona-Chip Systems, and Diagnostics
Authors: Shakeri, Amid
Advisor: Didar, Tohid
Department: Mechanical Engineering
Keywords: Biofunctionalization;Biosensors;Microfluidics;biomolecule immobilization
Publication Date: 2020
Abstract: Biofunctional interfaces capable of anchoring biomolecules and nanoparticles of interest onto a platform are the key components of many biomedical assays, clinical pathologies, as well as antibacterial and antiviral surfaces. In an ideal biofunctional surface, bio-entities and particles are covalently immobilized on a substrate in order to provide robustness and long-term stability. Nonetheless, most of the reported covalent immobilization strategies incorporate complex wet-chemical steps and long incubation times hindering their implementation for mass production and commercialization. Another essential factor in the biointerface preparation, specially with regard to biosensors and diagnostic applications, is utilization of an efficient and durable blocking agent that can inhibit non-specific adsorption of biomolecules thereby enhancing the sensitivity of sensors by diminishing the level of background noise. Many of the commonly used blocking agents lack proper prevention of non-specific adsorption in complex fluids. In addition, most of these agents are physically attached to surfaces making them unreliable for long-term usage in harsh environments (i.e. where shear stresses above 50 dyn/cm2 or strong washing buffers are involved). This thesis presents novel and versatile strategies to covalently immobilize nanoparticles and biomolecules on substrates. The new surface coating techniques are first implemented for robust attachment of TiO2 nanoparticles onto ceramic tiles providing self-cleaning properties. Further, we utilize similar strategies to covalently immobilize proteins and culture cells in microfluidic channels either as a full surface coating or as micropatterns of interest. The new strategies allow us to obtain adhesion of ~ 400 cells/mm2 in microfluidic channels after only 1-day incubation, which is not achievable by the conventional methods. Moreover, we show the possibility of covalently micropatterning of biomolecules on lubricant-infused surfaces (LISs) so as to attain a new class of biofunctional LISs. By integration of these surfaces into a biosensing platform, we are able to detect interleukin 6 (IL-6) in a complex biofluid of human whole plasma with a limit of detection (LOD) of 0.5 pg.mL-1. This LOD is significantly lower than the smallest reported IL-6 LOD in plasma, 23 pg mL-1, using a complex electrochemical system. The higher sensitivity of our developed biosensor can be attributed to the distinguish capability of biofunctional LISs in preventing non-specific adhesion of biomolecules compared to other blocking agents.
URI: http://hdl.handle.net/11375/26035
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Shakeri_Amid_202010_PhD.pdf
Access is allowed from: 2021-10-03
8.97 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue