Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25864
Title: Interactive effects of wastewater effluent and hypoxia on the metabolic physiology and health of mummichog killifish (Fundulus heteroclitus)
Authors: Lau, Samantha Chi-Lok
Advisor: Scott, Graham
Department: Biology
Keywords: Pollution;Respirometry;Pharmaceuticals and personal care products;Aerobic metabolism;Metabolic depression
Publication Date: 2020
Abstract: Hypoxia often occurs in aquatic ecosystems that receive effluent from municipal wastewater treatment plants (WWTP). WWTP effluent contains contaminants that could disrupt the complex physiological pathways fish use to cope with hypoxia (e.g., pharmaceuticals, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons), but the effects of WWTP effluent on the physiological responses of fish to chronic hypoxia is poorly understood. We exposed mummichog killifish (Fundulus heteroclitus) to hypoxia (5 and 2 kPa O2) and/or WWTP effluent for 21 days in a full factorial design. We then measured hypoxia tolerance, whole-animal metabolism, gill morphology, haematology, and tissue metabolites. In clean water, killifish responded to chronic hypoxia with improvements in hypoxia tolerance – increases in time to loss of equilibrium at 0.5 kPa (tLOE) and decreases in critical O2 tension (Pcrit) – in association with increased gill surface area as a result of regression of the interlamellar cell mass (ILCM). Concurrent exposure to wastewater attenuated the increases in tLOE and gill remodeling in chronic hypoxia, and nearly depleted brain glycogen stores. Therefore, exposure to WWTP effluent can disrupt the physiological mechanisms fish use to cope with chronic hypoxia and impair hypoxia tolerance. My research suggests that the combination of stressors near WWTPs can have interactive effects on the physiology and health of fish.
Description: This thesis is organized in “sandwich” format, as recommended by my supervisory committee. It consists of three main chapters. Chapter one is a general introduction and outlines the background information leading to the objectives and hypotheses of my thesis research. Chapter two is a manuscript prepared for submission to a peer-reviewed scientific journal. Chapter three is an overview of the major findings of this thesis, their implications in fish physiology and ecotoxicology, including suggestions of future directions of research. Appendix A contains data from an additional series of experiments that were conducted during my thesis but are not included as a full data chapter. It will be prepared for publication after my defence.
URI: http://hdl.handle.net/11375/25864
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lau_Samantha_C_FinalSubmission2020September_MSc.pdf
Access is allowed from: 2021-08-31
Samantha Lau MSc Thesis Final Submission September 20205.26 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue