Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25836
Title: Computational Modeling of RNA Replication in an RNA World
Authors: Tupper, Andrew
Advisor: Higgs, Paul
Department: Biochemistry
Keywords: RNA World;Origin of life
Publication Date: 2020
Abstract: The biology of modern life predicts the existence of an ancient RNA world. A phase of evolution in which organisms utilized RNA as a genetic material and a catalyst. However, the existence of an RNA organism necessitates RNA’s ability to self-replicate, which has yet to be proven. In this thesis, we utilize computational modeling to address some of the problems facing RNA replication. In chapter 2, we consider a polymerase ribozyme replicating by the Qβ bacteriophage mechanism. When bound to a surface, limited diffusion allows for survival so long as the termination error rate is below an error threshold. In Chapter 3, we consider the replication of short oligomers through an abiotic mechanism proposed in prebiotic experiments. When limited by substrate availability, competition results in the emergence of uniform RNA polymers from a messy prebiotic soup containing nucleotides of different chirality and sugars. In chapter 4, we consider the possibility of an RNA world lacking cytosine. Without cytosine, the ability of RNA to fold to complex secondary structures is limited. Furthermore, G-U wobble base pairing hinders the transfer of information during replication. Nevertheless, we conclude that an RNA world lacking cytosine may be possible, but more difficult for the initial emergence of life. In chapter 5, we analyze abiotic and viral mechanisms of RNA replication using known kinetic and thermodynamic data. While most mechanisms fail under non-enzymatic conditions, rolling-circle replication appears possible. In chapter 6, we extend our analysis of the rolling-circle mechanism to consider the fidelity of replication. Due to the thermodynamic penalty of incorporating an error, rolling-circle replication appears to undergo error correction. This results in highly accurate replication and circumvents Eigen’s paradox. Rolling-circle replication therefore presents an appealing option for the emergence of RNA replication in an RNA world.
URI: http://hdl.handle.net/11375/25836
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
tupper_andrew_s_2020sept_phd.pdf
Open Access
44.53 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue