Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25762
Title: MULTI-DOMAIN SELECTION OF APTAMERS FOR BACTERIAL PROTEINS: TARGETING FUSOBACTERIUM NUCLEATUM DNAK
Authors: Rey Rincon, Maria Alejandra
Advisor: Li, Yingfu
Department: Biochemistry and Biomedical Sciences
Keywords: Aptamer;Selection;Fusobacterium nucleatum;DnaK;Functional DNA;Sensor;Colorectal Cancer
Publication Date: 2020
Abstract: Aptamers are nucleic acid ligands that bind to a specific target molecule. They are discovered by in-vitro selection, whereby binding sequences are selected from a large library of random sequences through iterative affinity steps. Aptamers are used as molecular recognition elements in aptamer-based, as such, creating aptamers with high affinity and specificity to their targets is important to the field. Ligands with two binding sites have been reported to have enhanced binding affinity than ligands with one binding site. To improve the quality of aptamers for downstream applications, multidomain selection is proposed as a new method for selecting aptamers compatible with dimerization. Here, we applied the multidomain selection approach to Fusobacterium nucleatum DnaK and produced aptamers that target the N-terminal domain (NTD) and the C-terminal domain (CTD) of DnaK. The top aptamer for DnaK-NTD had a Kd of 59.7 nM, and for DnaK-CTD had a Kd of 202.0 nM. However, the aptamers did not bind to the full-length DnaK and could not be dimerized. Multiple-site binding offers greater flexibility in the design of detection systems, which could provide higher selectivity and sensitivity than aptamers found through standard approaches. Validation of a method to discover aptamers compatible with dimerization would result in the development of a targeted approach to discover high-quality aptamers for bacterial proteins that can be used in bacteria-detection techniques.
URI: http://hdl.handle.net/11375/25762
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Rey Rincon_Maria_A_202008_MSc.pdf
Access is allowed from: 2021-08-20
4.17 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue