Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25761
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLi, Yingfu-
dc.contributor.authorMorrison, Devon-
dc.date.accessioned2020-09-02T14:36:34Z-
dc.date.available2020-09-02T14:36:34Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11375/25761-
dc.description.abstractThe need for a non-invasive, accurate, easy-to-use, and cost-effective colorectal cancer (CRC) detection device is apparent in the low survival rates seen in late-stage diagnoses. Once CRC has progressed past stage I, the 5-year survival rate drops significantly, and treatment options become less favourable. The best way to treat CRC is to catch it early. The development of an RNA-cleaving fluorogenic DNAzyme (RFD) holds the potential to remediate this deficiency. A DNAzyme, called RFD-FN1, was identified from a synthetic random-sequence DNA library to selectively bind to an unknown target associated with Fusobacterium nucleatum, which has been found to be overabundant in pre- and cancerous colorectal tissue and stool. Target recognition by the DNAzyme induces the cleavage of a fluorogenic substrate and generates a fluorescent signal to indicate the presence of the bacterium. This thesis outlines the efforts made towards functionalizing the F. nucleatum-responsive probe in stool samples to create a non-invasive screening test. RFD-FN1 is selective towards a heat-stable F. nucleatum protein, but its limit of detection is only 10^7 CFU/mL. Although able to detect spiked concentrations of F. nucleatum cells in processed stool samples, the use of heat, filtering, centrifugation, antibiotics, culturing or serial dilutions are not sufficient to detect the F. nucleatum that is naturally present in the diseased samples. Experiments designed to enrich the target concentration revealed that the target is not produced consistently in any growing condition tested. Size exclusion chromatography and mass spectrometry analysis identified five potential targets that RFD-FN1 may be responding to. Three candidate targets were cloned and purified, but they failed to induce RFD-FN1’s activity. Due to the COVID-19 pandemic, the purification of the final two proteins was not completed. Purifying the two candidate targets and testing their ability to induce RFD-FN1 represents future research efforts. If the target for the DNAzyme is confirmed, a reselection for a more sensitive DNAzyme, that can function in human stool, can be attempted.en_US
dc.language.isoenen_US
dc.subjectDNAzymeen_US
dc.subjectcolorectal canceren_US
dc.subjectFusobacterium nucleatumen_US
dc.subjectbiosensoren_US
dc.subjectstoolen_US
dc.subjecttarget identificationen_US
dc.titleEfforts Towards Functionalizing a DNAzyme for Non-Invasive Colorectal Cancer Detectionen_US
dc.title.alternativeDNAzyme for Non-Invasive Colorectal Cancer Detectionen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistry and Biomedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Health Sciences (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Morrison_Devon_AT_August2020_MSc.pdf
Access is allowed from: 2021-08-31
6.56 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue