Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25742
Title: Investigations Into the Removal of Micro-Particles from Surfaces Using Ultrafast Lasers
Authors: Lampman, Timothy
Advisor: Haugen, Harold
Department: Engineering Physics
Keywords: micro-particles;ultrafast lasers;removal of micro-particles
Publication Date: Sep-2002
Abstract: This thesis reports on the work performed on the manipulation of micro­-particles on substrate surfaces using short laser pulses. For particles with diameters on the order of microns, the binding forces to surfaces are significantly larger than gravitational forces. To overcome these binding forces and manipulate the particles the use of femtosecond laser pulses has been investigated. Individual micro-particles (poly-divinylbenzene, glass and silver materials) with diameters around 2 um were removed from substrate surfaces (dielectric, semiconductor and metal substrates) us­ing a Ti:Sapphire laser system. The pulses produced at 800 nm had pulse lengths around 140 fs and were tightly focussed onto the surface using 5x and 10x micro­scope objectives. The peak fluence thresholds for particle removal were determined and the surfaces examined after irradiation by a scanning electron microscope and atomic force microscope to check for damage. The experimental results indicate that ablation of the substrate below the micro-particles is most likely to be respon­sible for micro-particle removal from the substrate surface when using femtosecond pulses. Ablation pits were observed for the dielectric micro-spheres on semiconductor substrates. It is also believed that ablation is responsible for the removal of other types of micro-particles from various substrates. Unlike the dielectric micro-sphere on semiconductor substrate results, the other particle-substrate combinations show a close correspondence between the removal and substrate ablation thresholds. It is believed that these results indicate the occurrence of ablation leading to the removal of the micro-particles. Calculations of the local electromagnetic fields around the micro-particles have also been carried out and the distributions used to interpret the experimental results.
URI: http://hdl.handle.net/11375/25742
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lampman_Timothy_J_2002Sept_Masters.pdf
Open Access
5.91 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue