Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25528
Title: Engineering α-1 Proteinase Inhibitor to Target Neutrophil Serine Proteinase PR3
Authors: Al-Arnawoot, Ahmed
Advisor: Sheffield, William P
Department: Medical Sciences (Blood and Cardiovascular)
Keywords: molecular biology;phage display;serpins;α-1 Proteinase Inhibitor;granulomatosis with polyangiitis;protein engineering;biopanning
Publication Date: 2020
Abstract: Activated neutrophils release a neutrophil serine proteinase (NSP) called Proteinase 3 (PR3). In granulomatosis with polyangiitis (GPA), an autoimmune vasculitis, enhanced PR3 release results in endothelial damage. Serine proteinase inhibitors (serpins) such as α-1 proteinase inhibitor (API) inhibit NSPs through the serpin’s reactive center loop (RCL). However, API is known to bind PR3 with a low specificity, compared to its main inhibitory target Human Neutrophil Elastase (HNE). The current treatment for GPA is immunosuppression, which leaves patients immunocompromised. Thus, the overall aim of this study was to engineer an API variant with a higher specificity to PR3 than HNE, which could serve as a possible novel therapeutic strategy for GPA. We created an API expression library, hypervariable at RCL residues A355-I356-P357-M358-S359, and expressed it in a T7 bacteriophage display system. This phage library was then biopanned for PR3 binding. Two conditions were used for each round of biopanning: experimental, with PR3, and the negative control, without PR3. The library was biopanned for a total of five consecutive rounds, with the product of one screen serving as the starting material for the next. A bacterial mass lysate screen was also employed to further probe the library with PR3. The phage-display and bacterial lysate screens resulted in the selection of two novel variants API-DA (D357/A358) and API-N (N359). Serpin-proteinase gel complexing assays indicated that API-N formed complex with PR3 similar to API-WT (wild-type), while API-DA was mainly cleaved as a substrate. There was no significant difference between the second order rate constants of API-N and API-WT reactions with PR3. Rate constants for API-DA binding to PR3 or for API-HNE reactions were not completed due to novel coronavirus (COVID-19) restrictions. However, this project successfully demonstrated the ability to screen a hypervariable API phage library with PR3, yielding two new novel API variants.
URI: http://hdl.handle.net/11375/25528
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Al-Arnawoot_Ahmed _2020June_MSc in Medical Sciences.pdf
Open Access
6.48 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue