Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25519
Title: Is it Worth the Hit? Examining the Cognitive Effects of Subconcussive Impacts in Sport Using Event-related Potentials
Authors: Ewers, Nathalee P.
Advisor: Connolly, John F.
Department: Psychology
Keywords: Concussion;ERP;Subconcussive;Cognitive function
Publication Date: 2020
Abstract: Concussion is a life-altering injury that can affect people of all ages. Event-related potentials (ERPs) extracted from electroencephalography (EEG) have proven sensitive to concussion-induced cognitive deficits. The MMN, P3a, P3b, and N2b are some ERP components of interest, assessing automatic attention, attentional resource allocation, working memory, and inhibitory executive function, respectively. These ERPs can assess some common symptoms associated with concussion at a level that cannot be attained using self-report. A reduced amplitude and potentially delayed latency of the P3a and P3b is a well-replicated result in concussion research. Furthermore, recent research suggests that an alteration in amplitude of earlier peaks such as the N2b and MMN might represent an irreversible change in cognitive processing that tends to occur in the chronic stages of concussion. Many of these studies have focused on athletes, however little research has evaluated the cognitive effects of sustaining numerous blows to the head that do not result in a clinical diagnosis of concussion, as is the case for many athletes in contact sports. These blows are often referred to as subconcussive impacts. The present study examined the cognitive and neurophysiological effects of subconcussive impacts on collegiate contact-sport athletes and compared them to noncontact athletes. The athletes completed questionnaires to evaluate their health and athletic history, as well as estimates of exposure to subconcussive impacts such as position and playing time, prior to participating in three paradigms meant to assess various cognitive processes during an EEG recording. Across two experiments we demonstrated that subconcussive impacts within a season of play can result in alterations in neurophysiological markers of cognitive health. Our findings also reveal that continued involvement in contact sports can have serious implications in one’s automatic attention, resource allocation, and working memory as demonstrated by reduced ERP amplitudes in contact as compared to non-contact athletes.
URI: http://hdl.handle.net/11375/25519
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ewers_Nathalee_P_finalsubmission2020June_Msc.pdf
Open Access
10.89 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue