Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25394
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFaure, Paul-
dc.contributor.advisorGillespie, Deda-
dc.contributor.authorByron, Taylor-
dc.date.accessioned2020-04-23T18:25:20Z-
dc.date.available2020-04-23T18:25:20Z-
dc.date.issued2020-06-11-
dc.identifier.urihttp://hdl.handle.net/11375/25394-
dc.description.abstractInsectivorous bats alter relative use of metabolic substrates to match requirements of their activities, including energetically expensive flight. The “fasting while foraging” hypothesis states that the metabolic demands of flight often exceed energy intake while foraging, hence bats may metabolize fat stores (especially early in the night) to power flight with ketones, a byproduct of the normal oxidation of fatty acids. Previous studies in bats have found increases in the plasma ketone ß-hydroxybutyrate following food consumption paired with or without flight. However, no study has explored whether increases in plasma ß-hydroxybutyrate occur following flight without food consumption. We used metabolite analysis to examine changes in plasma ß-hydroxybutyrate as a function of flight duration in 2 groups (fall and spring) of captive big brown bats (Eptesicus fuscus). We fasted bats for 12 hours prior to flight (exercise treatment) or rest (control), and then collected interfemoral vein blood. Exercise activity was quantified as flight time. For the Fall group, we collected three rest samples and one flight sample. Results for the Fall group were variable; interpretation of data patterns for this group may be complicated by changes in metabolism that occur in the fall when bats physiologically prepare for hibernation. To control for seasonal effects, we tested a second group of bats in the spring, collecting two rest and three flight samples. We found a positive correlation between flight duration and levels of plasma ß-hydroxybutyrate in the Spring group, which supports the fasting while foraging hypothesis.en_US
dc.language.isoenen_US
dc.subjectßeta-hydroxybutyrateen_US
dc.subjectBig Brown Baten_US
dc.subjectEnergeticsen_US
dc.subjectMetabolismen_US
dc.subjectKetoneen_US
dc.titleTHE EFFECT OF FLIGHT DURATION ON ß-HYDROXYBUTYRATE CONCENTRATION IN BLOOD PLASMA OF EPTESICUS FUSCUSen_US
dc.title.alternativePLASMA ß-HYDROXYBUTYRATE AND FLIGHT IN EPTESICUS FUSCUSen_US
dc.typeThesisen_US
dc.contributor.departmentPsychologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractThe “fasting while foraging” hypothesis states that the metabolic demands of flight can exceed energy intake from recently consumed prey items, so insectivorous bats may metabolize fat stores (especially early in the night) to power flight with ketones, a byproduct of the normal oxidation of fatty acids. Previous studies in bats have found increases in the plasma ketone ß-hydroxybutyrate following food consumption, but no study has explored whether increases in plasma ß-hydroxybutyrate occur following flight without food consumption. We collected and analyzed blood to examine changes in plasma ß-hydroxybutyrate following different flight durations in big brown bats. We explored both seasonal and captivity effects. To explore seasonal effects, we sampled blood from bats in the fall and the spring, times that are biologically significant to big brown bats. The spring is when bats move out of torpor, a form of hibernation, into an active state and the fall is when bats are preparing for entering into torpor. To explore captivity effects, we sampled blood from bats recently introduced to or established to captivity. Bats were fasted for 12 hours prior to flight (exercise treatment) or rest (control), and then blood was collected. We characterized exercise using flight time. We found that plasma ß-hydroxybutyrate increased after longer flight durations, which supports the fasting while foraging hypothesis.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Byron_Taylor_M_2020April_MSc Psychology.pdf
Access is allowed from: 2021-04-16
540.43 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue